Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background

We study the Klein-Gordon and the Dirac equations in the background of the Garfinkle-Horowitz-Strominger black hole in the Einstein frame. Using a SO(3,1)×U(1)-gauge covariant approach, as an alternative to the Newman-Penrose formalism for the Dirac equation, it turns out that these solutions can be...

Full description

Bibliographic Details
Main Authors: Marina-Aura Dariescu, Ciprian Dariescu, Cristian Stelea
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2019/5769564
id doaj-eb971da500444bb0a281b9a4aa41a46a
record_format Article
spelling doaj-eb971da500444bb0a281b9a4aa41a46a2020-11-25T02:14:51ZengHindawi LimitedAdvances in High Energy Physics1687-73571687-73652019-01-01201910.1155/2019/57695645769564Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole BackgroundMarina-Aura Dariescu0Ciprian Dariescu1Cristian Stelea2Faculty of Physics, “Alexandru Ioan Cuza” University, 11 Blvd. Carol I, Iasi 700506, RomaniaFaculty of Physics, “Alexandru Ioan Cuza” University, 11 Blvd. Carol I, Iasi 700506, RomaniaResearch Department, Faculty of Physics, “Alexandru Ioan Cuza” University, 11 Blvd. Carol I, Iasi 700506, RomaniaWe study the Klein-Gordon and the Dirac equations in the background of the Garfinkle-Horowitz-Strominger black hole in the Einstein frame. Using a SO(3,1)×U(1)-gauge covariant approach, as an alternative to the Newman-Penrose formalism for the Dirac equation, it turns out that these solutions can be expressed in terms of Heun confluent functions and we discuss some of their properties.http://dx.doi.org/10.1155/2019/5769564
collection DOAJ
language English
format Article
sources DOAJ
author Marina-Aura Dariescu
Ciprian Dariescu
Cristian Stelea
spellingShingle Marina-Aura Dariescu
Ciprian Dariescu
Cristian Stelea
Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
Advances in High Energy Physics
author_facet Marina-Aura Dariescu
Ciprian Dariescu
Cristian Stelea
author_sort Marina-Aura Dariescu
title Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
title_short Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
title_full Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
title_fullStr Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
title_full_unstemmed Heun-Type Solutions of the Klein-Gordon and Dirac Equations in the Garfinkle-Horowitz-Strominger Dilaton Black Hole Background
title_sort heun-type solutions of the klein-gordon and dirac equations in the garfinkle-horowitz-strominger dilaton black hole background
publisher Hindawi Limited
series Advances in High Energy Physics
issn 1687-7357
1687-7365
publishDate 2019-01-01
description We study the Klein-Gordon and the Dirac equations in the background of the Garfinkle-Horowitz-Strominger black hole in the Einstein frame. Using a SO(3,1)×U(1)-gauge covariant approach, as an alternative to the Newman-Penrose formalism for the Dirac equation, it turns out that these solutions can be expressed in terms of Heun confluent functions and we discuss some of their properties.
url http://dx.doi.org/10.1155/2019/5769564
work_keys_str_mv AT marinaauradariescu heuntypesolutionsofthekleingordonanddiracequationsinthegarfinklehorowitzstromingerdilatonblackholebackground
AT cipriandariescu heuntypesolutionsofthekleingordonanddiracequationsinthegarfinklehorowitzstromingerdilatonblackholebackground
AT cristianstelea heuntypesolutionsofthekleingordonanddiracequationsinthegarfinklehorowitzstromingerdilatonblackholebackground
_version_ 1724899416338333696