Dispersion Effects of Particulate Lead (Pb) from the Stack of a Lead Battery Recycling Plant

The contribution of emissions from the stack of a lead battery recycling plant to atmospheric lead concentrations and, eventually, to the topsoil of the surrounding area, were studied. A Gaussian dispersion model, of the American Meteorological Society/United States Environmental Protection Agency R...

Full description

Bibliographic Details
Main Authors: Dimitra Karali, Alexandros Stavridis, Glykeria Loupa, Spyridon Rapsomanikis
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/21/5690
Description
Summary:The contribution of emissions from the stack of a lead battery recycling plant to atmospheric lead concentrations and, eventually, to the topsoil of the surrounding area, were studied. A Gaussian dispersion model, of the American Meteorological Society/United States Environmental Protection Agency Regulatory Model, (AERMOD) was used to determine atmospheric total suspended particulate lead dispersion, which originated from stack emissions, over the wider study area. Stack emission parameters were obtained from online measurements of the industry control sensors. AERMOD simulated two scenarios for four calendar years, 2015 to 2018, one for the typical stack measured operating conditions and one for the legal limit operating conditions (emissions from the stack set by legislation to 0.5 mg m<sup>−3</sup>). Deposition fluxes modeled the input of atmospheric total suspended particulate Pb to the topsoil of the area. X-ray fluorescence (XRF) analyses were used to determine lead concentrations in the topsoil. The modeling results were compared with topsoil of six inhabited locations downwind from the stack in the direction of the prevailing winds to estimate the influence of lead deposition on topsoil near the industrial area.
ISSN:1996-1073