Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole

Abstract Geodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investi...

Full description

Bibliographic Details
Main Authors: Monimala Mondal, Farook Rahaman, Ksh. Newton Singh
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-021-08888-1
id doaj-ebd041c88fc64ff39e21112d23bb6c23
record_format Article
spelling doaj-ebd041c88fc64ff39e21112d23bb6c232021-01-31T16:34:19ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-01-0181111610.1140/epjc/s10052-021-08888-1Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black holeMonimala Mondal0Farook Rahaman1Ksh. Newton Singh2Department of Mathematics, Jadavpur UniversityDepartment of Mathematics, Jadavpur UniversityDepartment of Mathematics, Jadavpur UniversityAbstract Geodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ( $$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.https://doi.org/10.1140/epjc/s10052-021-08888-1
collection DOAJ
language English
format Article
sources DOAJ
author Monimala Mondal
Farook Rahaman
Ksh. Newton Singh
spellingShingle Monimala Mondal
Farook Rahaman
Ksh. Newton Singh
Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
European Physical Journal C: Particles and Fields
author_facet Monimala Mondal
Farook Rahaman
Ksh. Newton Singh
author_sort Monimala Mondal
title Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
title_short Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
title_full Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
title_fullStr Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
title_full_unstemmed Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole
title_sort lyapunov exponent, isco and kolmogorov–senai entropy for kerr–kiselev black hole
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2021-01-01
description Abstract Geodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ( $$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.
url https://doi.org/10.1140/epjc/s10052-021-08888-1
work_keys_str_mv AT monimalamondal lyapunovexponentiscoandkolmogorovsenaientropyforkerrkiselevblackhole
AT farookrahaman lyapunovexponentiscoandkolmogorovsenaientropyforkerrkiselevblackhole
AT kshnewtonsingh lyapunovexponentiscoandkolmogorovsenaientropyforkerrkiselevblackhole
_version_ 1724316251304493056