Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption

Abstract We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ε and permeab...

Full description

Bibliographic Details
Main Authors: Pengwei Wang, Naibo Chen, Chaojun Tang, Jing Chen, Fanxin Liu, Saiqian Sheng, Bo Yan, Chenghua Sui
Format: Article
Language:English
Published: SpringerOpen 2017-04-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-017-2048-2
Description
Summary:Abstract We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ε and permeability μ of a metamaterial anti-reflection layer, which could cancel the reflection from a hydrogenated amorphous silicon (α-Si:H) thin film on a metal substrate, within the visible wavelength range from 300 to 800 nm. We found that the metamaterial anti-reflection layer should have a negative refractive index (n < 0) for short-wavelength visible light but have a positive refractive index (n > 0) for long-wavelength visible light. The relative permittivity ε and permeability μ could be fitted by the Lorentz model, which exhibited electric and magnetic resonances, respectively.
ISSN:1931-7573
1556-276X