Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?

Objectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protect...

Full description

Bibliographic Details
Main Authors: Julien Pottecher, Chris Adamopoulos, Anne Lejay, Jamal Bouitbir, Anne-Laure Charles, Alain Meyer, Mervyn Singer, Valerie Wolff, Pierre Diemunsch, Gilles Laverny, Daniel Metzger, Bernard Geny
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-05-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphys.2018.00579/full
id doaj-ebdc17a3824c4b93a7cf99d9b348fe6e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Julien Pottecher
Julien Pottecher
Chris Adamopoulos
Chris Adamopoulos
Anne Lejay
Anne Lejay
Jamal Bouitbir
Anne-Laure Charles
Anne-Laure Charles
Alain Meyer
Alain Meyer
Mervyn Singer
Valerie Wolff
Valerie Wolff
Pierre Diemunsch
Pierre Diemunsch
Gilles Laverny
Daniel Metzger
Bernard Geny
Bernard Geny
spellingShingle Julien Pottecher
Julien Pottecher
Chris Adamopoulos
Chris Adamopoulos
Anne Lejay
Anne Lejay
Jamal Bouitbir
Anne-Laure Charles
Anne-Laure Charles
Alain Meyer
Alain Meyer
Mervyn Singer
Valerie Wolff
Valerie Wolff
Pierre Diemunsch
Pierre Diemunsch
Gilles Laverny
Daniel Metzger
Bernard Geny
Bernard Geny
Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
Frontiers in Physiology
diabetes
ischemia-reperfusion
peripheral arterial disease
protective kinases
muscles
mitochondria
author_facet Julien Pottecher
Julien Pottecher
Chris Adamopoulos
Chris Adamopoulos
Anne Lejay
Anne Lejay
Jamal Bouitbir
Anne-Laure Charles
Anne-Laure Charles
Alain Meyer
Alain Meyer
Mervyn Singer
Valerie Wolff
Valerie Wolff
Pierre Diemunsch
Pierre Diemunsch
Gilles Laverny
Daniel Metzger
Bernard Geny
Bernard Geny
author_sort Julien Pottecher
title Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
title_short Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
title_full Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
title_fullStr Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
title_full_unstemmed Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?
title_sort diabetes worsens skeletal muscle mitochondrial function, oxidative stress, and apoptosis after lower-limb ischemia-reperfusion: implication of the risk and safe pathways?
publisher Frontiers Media S.A.
series Frontiers in Physiology
issn 1664-042X
publishDate 2018-05-01
description Objectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protective kinases in this process.Materials and Methods: Streptozotocin-induced diabetic and non-diabetic rats were randomized to control or to IR injury (3 h of aortic cross-clamping and 2 h of reperfusion). Mitochondrial respiration, reactive oxygen species (ROS) production, protein levels of superoxide dismutase (SOD2) and endogenous protective kinases (RISK and SAFE pathways) were investigated in rat gastrocnemius, together with upstream (GSK-3β) and downstream (cleaved caspase-3) effectors of apoptosis.Results: Although already impaired when compared to non-diabetic controls at baseline, the decline in mitochondrial respiration after IR was more severe in diabetic rats. In diabetic animals, IR-triggered oxidative stress (increased ROS production and reduced SOD2 levels) and effectors of apoptosis (reduced GSK-3β inactivation and higher cleaved caspase-3 levels) were increased to a higher level than in the non-diabetics. IR had no effect on the RISK pathway in non-diabetics and diabetic rats, but increased STAT 3 only in the latter.Conclusion: Type 1 diabetes worsens IR-induced skeletal muscle injury, endogenous protective pathways not being efficiently stimulated.
topic diabetes
ischemia-reperfusion
peripheral arterial disease
protective kinases
muscles
mitochondria
url https://www.frontiersin.org/article/10.3389/fphys.2018.00579/full
work_keys_str_mv AT julienpottecher diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT julienpottecher diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT chrisadamopoulos diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT chrisadamopoulos diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT annelejay diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT annelejay diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT jamalbouitbir diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT annelaurecharles diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT annelaurecharles diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT alainmeyer diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT alainmeyer diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT mervynsinger diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT valeriewolff diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT valeriewolff diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT pierrediemunsch diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT pierrediemunsch diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT gilleslaverny diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT danielmetzger diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT bernardgeny diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
AT bernardgeny diabetesworsensskeletalmusclemitochondrialfunctionoxidativestressandapoptosisafterlowerlimbischemiareperfusionimplicationoftheriskandsafepathways
_version_ 1725180389793726464
spelling doaj-ebdc17a3824c4b93a7cf99d9b348fe6e2020-11-25T01:09:01ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2018-05-01910.3389/fphys.2018.00579360072Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?Julien Pottecher0Julien Pottecher1Chris Adamopoulos2Chris Adamopoulos3Anne Lejay4Anne Lejay5Jamal Bouitbir6Anne-Laure Charles7Anne-Laure Charles8Alain Meyer9Alain Meyer10Mervyn Singer11Valerie Wolff12Valerie Wolff13Pierre Diemunsch14Pierre Diemunsch15Gilles Laverny16Daniel Metzger17Bernard Geny18Bernard Geny19Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FrancePôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceDepartment of Cardiology, St. Paul General Hospital, Thessaloniki, GreeceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceService de Chirurgie Vasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceService de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceService de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceBloomsbury Institute of Intensive Care Medicine, University College London, London, United KingdomFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceUnité Neurovasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FrancePôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceCentre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, FranceCentre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, FranceFédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 “Mitochondrie, Stress Oxydant et Protection Musculaire”, Université de Strasbourg, Strasbourg, FranceService de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceObjectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protective kinases in this process.Materials and Methods: Streptozotocin-induced diabetic and non-diabetic rats were randomized to control or to IR injury (3 h of aortic cross-clamping and 2 h of reperfusion). Mitochondrial respiration, reactive oxygen species (ROS) production, protein levels of superoxide dismutase (SOD2) and endogenous protective kinases (RISK and SAFE pathways) were investigated in rat gastrocnemius, together with upstream (GSK-3β) and downstream (cleaved caspase-3) effectors of apoptosis.Results: Although already impaired when compared to non-diabetic controls at baseline, the decline in mitochondrial respiration after IR was more severe in diabetic rats. In diabetic animals, IR-triggered oxidative stress (increased ROS production and reduced SOD2 levels) and effectors of apoptosis (reduced GSK-3β inactivation and higher cleaved caspase-3 levels) were increased to a higher level than in the non-diabetics. IR had no effect on the RISK pathway in non-diabetics and diabetic rats, but increased STAT 3 only in the latter.Conclusion: Type 1 diabetes worsens IR-induced skeletal muscle injury, endogenous protective pathways not being efficiently stimulated.https://www.frontiersin.org/article/10.3389/fphys.2018.00579/fulldiabetesischemia-reperfusionperipheral arterial diseaseprotective kinasesmusclesmitochondria