Giant Electron-Phonon Anomaly in Doped La2CuO4 and Other Cuprates

Since conventional superconductivity is mediated by phonons, their role in the mechanism of high temperature superconductivity has been considered very early after the discovery of the cuprates. The initial consensus was that phonons could not produce transition temperatures near 100 K, and the main...

Full description

Bibliographic Details
Main Author: D. Reznik
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2010/523549
Description
Summary:Since conventional superconductivity is mediated by phonons, their role in the mechanism of high temperature superconductivity has been considered very early after the discovery of the cuprates. The initial consensus was that phonons could not produce transition temperatures near 100 K, and the main direction of research focused on nonphononic mechanisms. Subsequent work last reviewed by L. Pintschovius in 2005 showed that electron-phonon coupling in the cuprates is surprisingly strong for some phonons and its role is controversial. Experiments performed since then identified anomalous behavior of certain Cu–O bond-stretching phonons in cuprates as an important phenomenon that is somehow related to the mechanism of superconductivity. A particularly big advance was made in the study of doped La2CuO4. This work is reviewed here.
ISSN:1687-8108
1687-8124