Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises

Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencin...

Full description

Bibliographic Details
Main Authors: Xiyuan Chen, Hong Zhang, Sheng Zou
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/6/896
Description
Summary:Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz1/2 was successfully achieved by suppressing noises and optimizing parameters.
ISSN:1424-8220