Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

<p>The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (<span class="inline-formula">CH<sub>4</sub&g...

Full description

Bibliographic Details
Main Authors: Y. Zhao, M. Saunois, P. Bousquet, X. Lin, A. Berchet, M. I. Hegglin, J. G. Canadell, R. B. Jackson, D. A. Hauglustaine, S. Szopa, A. R. Stavert, N. L. Abraham, A. T. Archibald, S. Bekki, M. Deushi, P. Jöckel, B. Josse, D. Kinnison, O. Kirner, V. Marécal, F. M. O'Connor, D. A. Plummer, L. E. Revell, E. Rozanov, A. Stenke, S. Strode, S. Tilmes, E. J. Dlugokencky, B. Zheng
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/13701/2019/acp-19-13701-2019.pdf
Description
Summary:<p>The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (<span class="inline-formula">CH<sub>4</sub></span>) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard <span class="inline-formula">CH<sub>4</sub></span> emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between <span class="inline-formula">8.7×10<sup>5</sup></span> and <span class="inline-formula">12.8×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–<span class="inline-formula">0.3×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15&thinsp;ppbv reduction in the <span class="inline-formula">CH<sub>4</sub></span> mixing ratio in 2010, which represents 7&thinsp;%–20&thinsp;% of the model-simulated <span class="inline-formula">CH<sub>4</sub></span> increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a <span class="inline-formula">CH<sub>4</sub></span> mixing ratio uncertainty of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&gt;</mo><mo>±</mo><mn mathvariant="normal">30</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4a73e472ab7e050d281fe67c354e0ae1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-13701-2019-ie00001.svg" width="32pt" height="10pt" src="acp-19-13701-2019-ie00001.png"/></svg:svg></span></span>&thinsp;ppbv. Over the full 2000–2016 time period, using a common state-of-the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54&thinsp;% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in <span class="inline-formula">CH<sub>4</sub></span> forward simulations and emission optimizations performed by atmospheric inversions.</p>
ISSN:1680-7316
1680-7324