Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

<p>The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (<span class="inline-formula">CH<sub>4</sub&g...

Full description

Bibliographic Details
Main Authors: Y. Zhao, M. Saunois, P. Bousquet, X. Lin, A. Berchet, M. I. Hegglin, J. G. Canadell, R. B. Jackson, D. A. Hauglustaine, S. Szopa, A. R. Stavert, N. L. Abraham, A. T. Archibald, S. Bekki, M. Deushi, P. Jöckel, B. Josse, D. Kinnison, O. Kirner, V. Marécal, F. M. O'Connor, D. A. Plummer, L. E. Revell, E. Rozanov, A. Stenke, S. Strode, S. Tilmes, E. J. Dlugokencky, B. Zheng
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/13701/2019/acp-19-13701-2019.pdf
id doaj-ec8dc07f1ffb47e3b6b64bbd13f56b67
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Zhao
M. Saunois
P. Bousquet
X. Lin
X. Lin
A. Berchet
M. I. Hegglin
J. G. Canadell
R. B. Jackson
D. A. Hauglustaine
S. Szopa
A. R. Stavert
N. L. Abraham
N. L. Abraham
A. T. Archibald
A. T. Archibald
S. Bekki
M. Deushi
P. Jöckel
B. Josse
D. Kinnison
O. Kirner
V. Marécal
F. M. O'Connor
D. A. Plummer
L. E. Revell
L. E. Revell
E. Rozanov
E. Rozanov
A. Stenke
S. Strode
S. Strode
S. Tilmes
E. J. Dlugokencky
B. Zheng
spellingShingle Y. Zhao
M. Saunois
P. Bousquet
X. Lin
X. Lin
A. Berchet
M. I. Hegglin
J. G. Canadell
R. B. Jackson
D. A. Hauglustaine
S. Szopa
A. R. Stavert
N. L. Abraham
N. L. Abraham
A. T. Archibald
A. T. Archibald
S. Bekki
M. Deushi
P. Jöckel
B. Josse
D. Kinnison
O. Kirner
V. Marécal
F. M. O'Connor
D. A. Plummer
L. E. Revell
L. E. Revell
E. Rozanov
E. Rozanov
A. Stenke
S. Strode
S. Strode
S. Tilmes
E. J. Dlugokencky
B. Zheng
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
Atmospheric Chemistry and Physics
author_facet Y. Zhao
M. Saunois
P. Bousquet
X. Lin
X. Lin
A. Berchet
M. I. Hegglin
J. G. Canadell
R. B. Jackson
D. A. Hauglustaine
S. Szopa
A. R. Stavert
N. L. Abraham
N. L. Abraham
A. T. Archibald
A. T. Archibald
S. Bekki
M. Deushi
P. Jöckel
B. Josse
D. Kinnison
O. Kirner
V. Marécal
F. M. O'Connor
D. A. Plummer
L. E. Revell
L. E. Revell
E. Rozanov
E. Rozanov
A. Stenke
S. Strode
S. Strode
S. Tilmes
E. J. Dlugokencky
B. Zheng
author_sort Y. Zhao
title Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
title_short Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
title_full Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
title_fullStr Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
title_full_unstemmed Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
title_sort inter-model comparison of global hydroxyl radical (oh) distributions and their impact on atmospheric methane over the 2000–2016 period
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-11-01
description <p>The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (<span class="inline-formula">CH<sub>4</sub></span>) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard <span class="inline-formula">CH<sub>4</sub></span> emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between <span class="inline-formula">8.7×10<sup>5</sup></span> and <span class="inline-formula">12.8×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–<span class="inline-formula">0.3×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15&thinsp;ppbv reduction in the <span class="inline-formula">CH<sub>4</sub></span> mixing ratio in 2010, which represents 7&thinsp;%–20&thinsp;% of the model-simulated <span class="inline-formula">CH<sub>4</sub></span> increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a <span class="inline-formula">CH<sub>4</sub></span> mixing ratio uncertainty of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&gt;</mo><mo>±</mo><mn mathvariant="normal">30</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4a73e472ab7e050d281fe67c354e0ae1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-13701-2019-ie00001.svg" width="32pt" height="10pt" src="acp-19-13701-2019-ie00001.png"/></svg:svg></span></span>&thinsp;ppbv. Over the full 2000–2016 time period, using a common state-of-the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54&thinsp;% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in <span class="inline-formula">CH<sub>4</sub></span> forward simulations and emission optimizations performed by atmospheric inversions.</p>
url https://www.atmos-chem-phys.net/19/13701/2019/acp-19-13701-2019.pdf
work_keys_str_mv AT yzhao intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT msaunois intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT pbousquet intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT xlin intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT xlin intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT aberchet intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT mihegglin intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT jgcanadell intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT rbjackson intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT dahauglustaine intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT sszopa intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT arstavert intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT nlabraham intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT nlabraham intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT atarchibald intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT atarchibald intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT sbekki intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT mdeushi intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT pjockel intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT bjosse intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT dkinnison intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT okirner intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT vmarecal intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT fmoconnor intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT daplummer intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT lerevell intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT lerevell intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT erozanov intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT erozanov intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT astenke intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT sstrode intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT sstrode intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT stilmes intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT ejdlugokencky intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
AT bzheng intermodelcomparisonofglobalhydroxylradicalohdistributionsandtheirimpactonatmosphericmethaneoverthe20002016period
_version_ 1724985949526425600
spelling doaj-ec8dc07f1ffb47e3b6b64bbd13f56b672020-11-25T01:54:57ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-11-0119137011372310.5194/acp-19-13701-2019Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 periodY. Zhao0M. Saunois1P. Bousquet2X. Lin3X. Lin4A. Berchet5M. I. Hegglin6J. G. Canadell7R. B. Jackson8D. A. Hauglustaine9S. Szopa10A. R. Stavert11N. L. Abraham12N. L. Abraham13A. T. Archibald14A. T. Archibald15S. Bekki16M. Deushi17P. Jöckel18B. Josse19D. Kinnison20O. Kirner21V. Marécal22F. M. O'Connor23D. A. Plummer24L. E. Revell25L. E. Revell26E. Rozanov27E. Rozanov28A. Stenke29S. Strode30S. Strode31S. Tilmes32E. J. Dlugokencky33B. Zheng34Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, Francenow at: Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceDepartment of Meteorology, University of Reading, Reading, UKGlobal Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory 2601, AustraliaEarth System Science Department, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceCSIRO Oceans and Atmosphere, Aspendale, Victoria, 3195, AustraliaDepartment of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UKNCAS-Climate, University of Cambridge, CB2 1EW, Cambridge, UKDepartment of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UKNCAS-Climate, University of Cambridge, CB2 1EW, Cambridge, UKLATMOS, Université Pierre et Marie Curie, 4 Place Jussieu Tour 45, couloir 45–46, 3e étage Boite 102, 75252, Paris CEDEX 05, FranceMeteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, JapanDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyCentre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301, USASteinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, GermanyCentre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceMet Office Hadley Centre, Exeter, EX1 3PB, UKClimate Research Branch, Environment and Climate Change Canada, Montreal, CanadaInstitute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, SwitzerlandSchool of Physical and Chemical Sciences, University of Canterbury, Christchurch, New ZealandInstitute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, SwitzerlandPhysikalisch-Meteorologisches Observatorium Davos World Radiation Centre, Dorfstrasse 33, 7260 Davos Dorf, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, SwitzerlandNASA Goddard Space Flight Center, Greenbelt, MD, USAUniversities Space Research Association (USRA), GESTAR, Columbia, MD, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301, USAGlobal Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France<p>The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (<span class="inline-formula">CH<sub>4</sub></span>) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard <span class="inline-formula">CH<sub>4</sub></span> emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between <span class="inline-formula">8.7×10<sup>5</sup></span> and <span class="inline-formula">12.8×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–<span class="inline-formula">0.3×10<sup>5</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15&thinsp;ppbv reduction in the <span class="inline-formula">CH<sub>4</sub></span> mixing ratio in 2010, which represents 7&thinsp;%–20&thinsp;% of the model-simulated <span class="inline-formula">CH<sub>4</sub></span> increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a <span class="inline-formula">CH<sub>4</sub></span> mixing ratio uncertainty of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&gt;</mo><mo>±</mo><mn mathvariant="normal">30</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4a73e472ab7e050d281fe67c354e0ae1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-13701-2019-ie00001.svg" width="32pt" height="10pt" src="acp-19-13701-2019-ie00001.png"/></svg:svg></span></span>&thinsp;ppbv. Over the full 2000–2016 time period, using a common state-of-the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54&thinsp;% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in <span class="inline-formula">CH<sub>4</sub></span> forward simulations and emission optimizations performed by atmospheric inversions.</p>https://www.atmos-chem-phys.net/19/13701/2019/acp-19-13701-2019.pdf