On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$

Abstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a...

Full description

Bibliographic Details
Main Authors: E. M. Solouma, W. M. Mahmoud
Format: Article
Language:English
Published: SpringerOpen 2019-04-01
Series:Journal of the Egyptian Mathematical Society
Subjects:
Online Access:http://link.springer.com/article/10.1186/s42787-019-0009-x
id doaj-ecb5baaff436498fb22d7b28ad6234e0
record_format Article
spelling doaj-ecb5baaff436498fb22d7b28ad6234e02020-11-25T03:09:12ZengSpringerOpenJournal of the Egyptian Mathematical Society2090-91282019-04-0127111710.1186/s42787-019-0009-xOn spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$E. M. Solouma0W. M. Mahmoud1Department of Mathematics and Statistics, College of Science, Al Imam Mohammad Ibn Saud Islamic UniversityDepartment of Mathematics, Faculty of Science, Aswan UniversityAbstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a spacelike base curve in ℝ13 $\mathbb {R}^{3}_{1}$. Furthermore, we study the geometric properties of these curves when the spacelike base curve r is specially contained in a plane. Finally, we give a computational example to illustrate these curves.http://link.springer.com/article/10.1186/s42787-019-0009-xSmarandache curveEquiform Frenet frameBishop frameMinkowski 3-space
collection DOAJ
language English
format Article
sources DOAJ
author E. M. Solouma
W. M. Mahmoud
spellingShingle E. M. Solouma
W. M. Mahmoud
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
Journal of the Egyptian Mathematical Society
Smarandache curve
Equiform Frenet frame
Bishop frame
Minkowski 3-space
author_facet E. M. Solouma
W. M. Mahmoud
author_sort E. M. Solouma
title On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
title_short On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
title_full On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
title_fullStr On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
title_full_unstemmed On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
title_sort on spacelike equiform-bishop smarandache curves on s12 $s_{1}^{2}$
publisher SpringerOpen
series Journal of the Egyptian Mathematical Society
issn 2090-9128
publishDate 2019-04-01
description Abstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a spacelike base curve in ℝ13 $\mathbb {R}^{3}_{1}$. Furthermore, we study the geometric properties of these curves when the spacelike base curve r is specially contained in a plane. Finally, we give a computational example to illustrate these curves.
topic Smarandache curve
Equiform Frenet frame
Bishop frame
Minkowski 3-space
url http://link.springer.com/article/10.1186/s42787-019-0009-x
work_keys_str_mv AT emsolouma onspacelikeequiformbishopsmarandachecurvesons12s12
AT wmmahmoud onspacelikeequiformbishopsmarandachecurvesons12s12
_version_ 1724663976177958912