On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$
Abstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-04-01
|
Series: | Journal of the Egyptian Mathematical Society |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s42787-019-0009-x |
id |
doaj-ecb5baaff436498fb22d7b28ad6234e0 |
---|---|
record_format |
Article |
spelling |
doaj-ecb5baaff436498fb22d7b28ad6234e02020-11-25T03:09:12ZengSpringerOpenJournal of the Egyptian Mathematical Society2090-91282019-04-0127111710.1186/s42787-019-0009-xOn spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$E. M. Solouma0W. M. Mahmoud1Department of Mathematics and Statistics, College of Science, Al Imam Mohammad Ibn Saud Islamic UniversityDepartment of Mathematics, Faculty of Science, Aswan UniversityAbstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a spacelike base curve in ℝ13 $\mathbb {R}^{3}_{1}$. Furthermore, we study the geometric properties of these curves when the spacelike base curve r is specially contained in a plane. Finally, we give a computational example to illustrate these curves.http://link.springer.com/article/10.1186/s42787-019-0009-xSmarandache curveEquiform Frenet frameBishop frameMinkowski 3-space |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. M. Solouma W. M. Mahmoud |
spellingShingle |
E. M. Solouma W. M. Mahmoud On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ Journal of the Egyptian Mathematical Society Smarandache curve Equiform Frenet frame Bishop frame Minkowski 3-space |
author_facet |
E. M. Solouma W. M. Mahmoud |
author_sort |
E. M. Solouma |
title |
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ |
title_short |
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ |
title_full |
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ |
title_fullStr |
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ |
title_full_unstemmed |
On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$ |
title_sort |
on spacelike equiform-bishop smarandache curves on s12 $s_{1}^{2}$ |
publisher |
SpringerOpen |
series |
Journal of the Egyptian Mathematical Society |
issn |
2090-9128 |
publishDate |
2019-04-01 |
description |
Abstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a spacelike base curve in ℝ13 $\mathbb {R}^{3}_{1}$. Furthermore, we study the geometric properties of these curves when the spacelike base curve r is specially contained in a plane. Finally, we give a computational example to illustrate these curves. |
topic |
Smarandache curve Equiform Frenet frame Bishop frame Minkowski 3-space |
url |
http://link.springer.com/article/10.1186/s42787-019-0009-x |
work_keys_str_mv |
AT emsolouma onspacelikeequiformbishopsmarandachecurvesons12s12 AT wmmahmoud onspacelikeequiformbishopsmarandachecurvesons12s12 |
_version_ |
1724663976177958912 |