On a New Extension of Mulholland’s Inequality in the Whole Plane

A new, more accurate extension of Mulholland’s inequality in the whole plane with a best possible constant factor is presented by introducing independent parameters, applying weight coefficients and using Hermite-Hadamard’s inequality. Moreover, the equivalent forms, some particular cases, and the o...

Full description

Bibliographic Details
Main Authors: Bicheng Yang, Yanru Zhong, Qiang Chen
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/9569380
Description
Summary:A new, more accurate extension of Mulholland’s inequality in the whole plane with a best possible constant factor is presented by introducing independent parameters, applying weight coefficients and using Hermite-Hadamard’s inequality. Moreover, the equivalent forms, some particular cases, and the operator expressions are considered.
ISSN:2314-8896
2314-8888