A New Method for the Aggregate Proportion Calculation and Gradation Optimization of Asphalt-Treated Base (ATB-25)

Asphalt-treated base (ATB-25) is a widely used flexible base material. The composition and gradation of mineral aggregate are important factors affecting pavement performance of asphalt treated base. In this study, two new methods were proposed to address the problems of existing aggregate proportio...

Full description

Bibliographic Details
Main Authors: Fu Zhu, Jianbo Han, Shuang Zhang, Weizhi Dong
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/9709070
Description
Summary:Asphalt-treated base (ATB-25) is a widely used flexible base material. The composition and gradation of mineral aggregate are important factors affecting pavement performance of asphalt treated base. In this study, two new methods were proposed to address the problems of existing aggregate proportion calculation for asphalt mixtures: (1) the combination of generalized inverse solution of the normal equation and spreadsheet trial and (2) quadratic programming. Both methods can calculate mass ratios of various aggregates in a quick and accurate manner. The orthogonal test was used to design nine aggregate gradations within the range of asphalt treated base (ATB-25) stated in the industrial standard. The aggregate proportion was calculated by two new methods. The Marshall test, water weight test, rutting test, and water-soaked Marshall test were carried out on the asphalt mixture specimens. The pavement performance test results were fuzzified using the fuzzy mathematics method, and the weights of pavement performance evaluation indexes were determined through the analytic hierarchy process. Taking the fuzzy comprehensive evaluation values as the objective function, test results were analyzed and evaluated. Finally, the optimal aggregate gradation was determined considering factors of compactness, high-temperature rutting resistance, and water stability.
ISSN:1563-5147