Mammalian lipin phosphatidic acid phosphatases in lipid synthesis and beyond: metabolic and inflammatory disorders

The regulation of cellular lipid storage and membrane lipid composition plays a critical role in metabolic homeostasis, and dysregulation may contribute to disorders such as obesity, fatty liver, type 2 diabetes, and cardiovascular disease. The mammalian lipin proteins (lipin 1, lipin 2, and lipin 3...

Full description

Bibliographic Details
Main Authors: Karen Reue, Huan Wang
Format: Article
Language:English
Published: Elsevier 2019-04-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520325840
Description
Summary:The regulation of cellular lipid storage and membrane lipid composition plays a critical role in metabolic homeostasis, and dysregulation may contribute to disorders such as obesity, fatty liver, type 2 diabetes, and cardiovascular disease. The mammalian lipin proteins (lipin 1, lipin 2, and lipin 3) are phosphatidic acid phosphatase (PAP) enzymes that modulate levels of cellular triacylglycerols and phospholipids, and also regulate lipid intermediates in cellular signaling pathways. Lipin proteins also have the ability to coactivate/corepress transcription. In humans and mice, lipin gene mutations cause severe metabolic phenotypes including rhabdomyolysis (lipin 1), autoinflammatory disease (lipin 2), and impaired intestinal lipoprotein assembly (lipin 2/lipin 3). Characterization of these diseases has revealed roles for lipin PAP activity in fundamental cellular processes such as autophagy, inflammasome activation, and lipoprotein assembly. Lipin protein activity is regulated at pre- and posttranscriptional levels, which suggests a need for their ordered response to specific physiological stimuli. Challenges for the future include better elucidation of the unique biochemical and physiological properties of individual lipin family members and determination of lipin protein structure-function relationships. Further research may propel exploration of lipin proteins as viable therapeutic targets in metabolic or inflammatory disorders.
ISSN:0022-2275