Ambivalent Role of Annealing in Tensile Properties of Step-Rolled Ti-6Al-4V with Ultrafine-Grained Structure

Step rolling can be used to mass-produce ultrafine-grained (UFG) Ti-6Al-4V sheets. This study clarified the effect of subsequent annealing on the tensile properties of step-rolled Ti-6Al-4V at room temperature (RT) and elevated temperature. The step-rolled alloy retained its UFG structure after subs...

Full description

Bibliographic Details
Main Authors: Geonhyeong Kim, Taekyung Lee, Yongmoon Lee, Jae Nam Kim, Seong Woo Choi, Jae Keun Hong, Chong Soo Lee
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/5/684
Description
Summary:Step rolling can be used to mass-produce ultrafine-grained (UFG) Ti-6Al-4V sheets. This study clarified the effect of subsequent annealing on the tensile properties of step-rolled Ti-6Al-4V at room temperature (RT) and elevated temperature. The step-rolled alloy retained its UFG structure after subsequent annealing at 500–600 °C. The RT ductility of the step-rolled alloy increased regardless of annealing temperature, but strengthening was only attained by annealing at 500 °C. In contrast, subsequent annealing rarely improved the elevated-temperature tensile properties. The step-rolled Ti-6Al-4V alloy without the annealing showed the highest elongation to failure of 960% at 700 °C and a strain rate of 10<sup>−3</sup> s<sup>−1</sup>. The ambivalent effect of annealing on RT and elevated-temperature tensile properties is a result of microstructural features, such as dislocation tangles, subgrains, phases, and continuous dynamic recrystallization.
ISSN:2075-4701