Waves from the centre: probing PBH and other macroscopic dark matter with LISA

Abstract A significant fraction of cosmological dark matter can be formed by very dense macroscopic objects, for example primordial black holes. Gravitational waves offer a promising way to probe these kinds of dark-matter candidates, in a parameter space region that is relatively untested by electr...

Full description

Bibliographic Details
Main Authors: Florian Kühnel, Andrew Matas, Glenn D. Starkman, Katherine Freese
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-8183-4
Description
Summary:Abstract A significant fraction of cosmological dark matter can be formed by very dense macroscopic objects, for example primordial black holes. Gravitational waves offer a promising way to probe these kinds of dark-matter candidates, in a parameter space region that is relatively untested by electromagnetic observations. In this work we consider an ensemble of macroscopic dark matter with masses in the range $$10^{-13}$$ 10-13 –$$1\ M_{\odot }$$ 1M⊙ orbiting a super-massive black hole. While the strain produced by an individual dark-matter particle will be very small, gravitational waves emitted by a large number of such objects will add incoherently and produce a stochastic gravitational-wave background. We show that LISA can be a formidable machine for detecting the stochastic background of such objects orbiting the black hole in the centre of the Milky Way, Sgr $$\mathrm{A}^{\!*}$$ A∗ , if a dark-matter spike of the type originally predicted by Gondolo and Silk forms near the central black hole.
ISSN:1434-6044
1434-6052