A Scenario Tree based Stochastic Programming Approach for Multi-Stage Weapon Equipment Mix Production Planning in Defense Manufacturing

The evolving military capability requirements (CRs) must be meted continuously by the multi-stage weapon equipment mix production planning (MWEMPP). Meanwhile, the CRs possess complex uncertainties with the variant military tasks in the whole planning horizon. The mean-value deterministic programmin...

Full description

Bibliographic Details
Main Authors: Li Xuan, Zhou Yu, Liao Tianjun, Hu Yajun
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20165101010
Description
Summary:The evolving military capability requirements (CRs) must be meted continuously by the multi-stage weapon equipment mix production planning (MWEMPP). Meanwhile, the CRs possess complex uncertainties with the variant military tasks in the whole planning horizon. The mean-value deterministic programming technique is difficult to deal with the multi-period and multi-level uncertain decision-making problem in MWEMPP. Therefore, a multi-stage stochastic programming approach is proposed to solve this problem. This approach first uses the scenario tree to quantitatively describe the bi-level uncertainty of the time and quantity of the CRs, and then build the whole off-line planning alternatives assembles for each possible scenario, at last the optimal planning alternative is selected on-line to flexibly encounter the real scenario in each period. A case is studied to validate the proposed approach. The results confirm that the proposed approach can better hedge against each scenario of the CRs than the traditional mean-value deterministic technique.
ISSN:2261-236X