Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface

<p>Methods to radiometrically calibrate a non-imaging airborne visible-to-shortwave infrared (VSWIR) spectrometer to measure the Greenland ice sheet surface are presented. Airborne VSWIR measurement performance for bright Greenland ice and dark bare rock/soil targets is compared against the MO...

Full description

Bibliographic Details
Main Authors: C. J. Crawford, J. van den Bosch, K. M. Brunt, M. G. Hom, J. W. Cooper, D. J. Harding, J. J. Butler, P. W. Dabney, T. A. Neumann, C. S. Cleckner, T. Markus
Format: Article
Language:English
Published: Copernicus Publications 2019-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/1913/2019/amt-12-1913-2019.pdf
id doaj-ee52f9f7c01942d183b0900c0702e719
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. J. Crawford
C. J. Crawford
C. J. Crawford
J. van den Bosch
K. M. Brunt
K. M. Brunt
M. G. Hom
M. G. Hom
M. G. Hom
J. W. Cooper
J. W. Cooper
J. W. Cooper
D. J. Harding
J. J. Butler
J. J. Butler
P. W. Dabney
T. A. Neumann
C. S. Cleckner
T. Markus
spellingShingle C. J. Crawford
C. J. Crawford
C. J. Crawford
J. van den Bosch
K. M. Brunt
K. M. Brunt
M. G. Hom
M. G. Hom
M. G. Hom
J. W. Cooper
J. W. Cooper
J. W. Cooper
D. J. Harding
J. J. Butler
J. J. Butler
P. W. Dabney
T. A. Neumann
C. S. Cleckner
T. Markus
Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
Atmospheric Measurement Techniques
author_facet C. J. Crawford
C. J. Crawford
C. J. Crawford
J. van den Bosch
K. M. Brunt
K. M. Brunt
M. G. Hom
M. G. Hom
M. G. Hom
J. W. Cooper
J. W. Cooper
J. W. Cooper
D. J. Harding
J. J. Butler
J. J. Butler
P. W. Dabney
T. A. Neumann
C. S. Cleckner
T. Markus
author_sort C. J. Crawford
title Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
title_short Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
title_full Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
title_fullStr Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
title_full_unstemmed Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
title_sort radiometric calibration of a non-imaging airborne spectrometer to measure the greenland ice sheet surface
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2019-03-01
description <p>Methods to radiometrically calibrate a non-imaging airborne visible-to-shortwave infrared (VSWIR) spectrometer to measure the Greenland ice sheet surface are presented. Airborne VSWIR measurement performance for bright Greenland ice and dark bare rock/soil targets is compared against the MODerate resolution atmospheric TRANsmission (MODTRAN<sup>®</sup>) radiative transfer code (version 6.0), and a coincident Landsat 8 Operational Land Imager (OLI) acquisition on 29 July 2015 during an in-flight radiometric calibration experiment. Airborne remote sensing flights were carried out in northwestern Greenland in preparation for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) laser altimeter mission. A total of nine science flights were conducted over the Greenland ice sheet, sea ice, and open-ocean water. The campaign's primary purpose was to correlate green laser pulse penetration into snow and ice with spectroscopic-derived surface properties. An experimental airborne instrument configuration that included a nadir-viewing (looking downward at the surface) non-imaging Analytical Spectral Devices (ASD) Inc. spectrometer that measured upwelling VSWIR (0.35 to 2.5&thinsp;<span class="inline-formula">µ</span>m) spectral radiance (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">W</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">sr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">µ</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c12b79b6a3c597d34641ede95b2f39cf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-1913-2019-ie00001.svg" width="81pt" height="15pt" src="amt-12-1913-2019-ie00001.png"/></svg:svg></span></span>) in the two-color Slope Imaging Multi-polarization Photon-Counting Lidar's (SIMPL) ground instantaneous field of view, and a zenith-viewing (looking upward at the sky) ASD spectrometer that measured VSWIR spectral irradiance (W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;nm<span class="inline-formula"><sup>−1</sup></span>) was flown. National Institute of Standards and Technology (NIST) traceable radiometric calibration procedures for laboratory, in-flight, and field<span id="page1914"/> environments are described in detail to achieve a targeted VSWIR measurement requirement of within 5&thinsp;% to support calibration/validation efforts and remote sensing algorithm development. Our MODTRAN predictions for the 29 July flight line over dark and bright targets indicate that the airborne nadir-viewing spectrometer spectral radiance measurement uncertainty was between 0.6&thinsp;% and 4.7&thinsp;% for VSWIR wavelengths (0.4 to 2.0&thinsp;<span class="inline-formula">µ</span>m) with atmospheric transmittance greater than 80&thinsp;%. MODTRAN predictions for Landsat 8 OLI relative spectral response functions suggest that OLI is measuring 6&thinsp;% to 16&thinsp;% more top-of-atmosphere (TOA) spectral radiance from the Greenland ice sheet surface than was predicted using apparent reflectance spectra from the nadir-viewing spectrometer. While more investigation is required to convert airborne VSWIR spectral radiance into atmospherically corrected airborne surface reflectance, it is expected that airborne science flight data products will contribute to spectroscopic determination of Greenland ice sheet surface optical properties to improve understanding of their potential influence on ICESat-2 measurements.</p>
url https://www.atmos-meas-tech.net/12/1913/2019/amt-12-1913-2019.pdf
work_keys_str_mv AT cjcrawford radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT cjcrawford radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT cjcrawford radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jvandenbosch radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT kmbrunt radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT kmbrunt radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT mghom radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT mghom radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT mghom radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jwcooper radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jwcooper radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jwcooper radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT djharding radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jjbutler radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT jjbutler radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT pwdabney radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT taneumann radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT cscleckner radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
AT tmarkus radiometriccalibrationofanonimagingairbornespectrometertomeasurethegreenlandicesheetsurface
_version_ 1725214543589670912
spelling doaj-ee52f9f7c01942d183b0900c0702e7192020-11-25T01:00:12ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-03-01121913193310.5194/amt-12-1913-2019Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surfaceC. J. Crawford0C. J. Crawford1C. J. Crawford2J. van den Bosch3K. M. Brunt4K. M. Brunt5M. G. Hom6M. G. Hom7M. G. Hom8J. W. Cooper9J. W. Cooper10J. W. Cooper11D. J. Harding12J. J. Butler13J. J. Butler14P. W. Dabney15T. A. Neumann16C. S. Cleckner17T. Markus18Arctic Slope Regional Corporation Federal InuTeq, contractor to the U.S. Geological Survey Earth Resources Observation and Science Center, Science and Applications Branch, 47914 252nd Street, Sioux Falls, SD, 57198, USAEarth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court #4001, College Park, MD 20704, USACryospheric Sciences Laboratory (Code 615), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USAAir Force Research Laboratory, Battlespace Surveillance Innovation Branch, Kirtland Air Force Base, NM 87117, USAEarth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court #4001, College Park, MD 20704, USACryospheric Sciences Laboratory (Code 615), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USAScience Systems and Applications Inc., 10210 Greenbelt Road #600, Landham, MD 20706, USABiospheric Sciences Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USABiospheric Optics Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USAScience Systems and Applications Inc., 10210 Greenbelt Road #600, Landham, MD 20706, USABiospheric Sciences Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USARadiometric Calibration Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USABiospheric Sciences Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USABiospheric Sciences Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USARadiometric Calibration Laboratory (Code 618), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USALaser Remote Sensing Laboratory (Code 694), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USACryospheric Sciences Laboratory (Code 615), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USAResearch Services Division (Code D1), NASA Langley Research Center, 1 NASA Drive, Hampton, VI 23666, USACryospheric Sciences Laboratory (Code 615), NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA<p>Methods to radiometrically calibrate a non-imaging airborne visible-to-shortwave infrared (VSWIR) spectrometer to measure the Greenland ice sheet surface are presented. Airborne VSWIR measurement performance for bright Greenland ice and dark bare rock/soil targets is compared against the MODerate resolution atmospheric TRANsmission (MODTRAN<sup>®</sup>) radiative transfer code (version 6.0), and a coincident Landsat 8 Operational Land Imager (OLI) acquisition on 29 July 2015 during an in-flight radiometric calibration experiment. Airborne remote sensing flights were carried out in northwestern Greenland in preparation for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) laser altimeter mission. A total of nine science flights were conducted over the Greenland ice sheet, sea ice, and open-ocean water. The campaign's primary purpose was to correlate green laser pulse penetration into snow and ice with spectroscopic-derived surface properties. An experimental airborne instrument configuration that included a nadir-viewing (looking downward at the surface) non-imaging Analytical Spectral Devices (ASD) Inc. spectrometer that measured upwelling VSWIR (0.35 to 2.5&thinsp;<span class="inline-formula">µ</span>m) spectral radiance (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">W</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">sr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">µ</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c12b79b6a3c597d34641ede95b2f39cf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-1913-2019-ie00001.svg" width="81pt" height="15pt" src="amt-12-1913-2019-ie00001.png"/></svg:svg></span></span>) in the two-color Slope Imaging Multi-polarization Photon-Counting Lidar's (SIMPL) ground instantaneous field of view, and a zenith-viewing (looking upward at the sky) ASD spectrometer that measured VSWIR spectral irradiance (W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;nm<span class="inline-formula"><sup>−1</sup></span>) was flown. National Institute of Standards and Technology (NIST) traceable radiometric calibration procedures for laboratory, in-flight, and field<span id="page1914"/> environments are described in detail to achieve a targeted VSWIR measurement requirement of within 5&thinsp;% to support calibration/validation efforts and remote sensing algorithm development. Our MODTRAN predictions for the 29 July flight line over dark and bright targets indicate that the airborne nadir-viewing spectrometer spectral radiance measurement uncertainty was between 0.6&thinsp;% and 4.7&thinsp;% for VSWIR wavelengths (0.4 to 2.0&thinsp;<span class="inline-formula">µ</span>m) with atmospheric transmittance greater than 80&thinsp;%. MODTRAN predictions for Landsat 8 OLI relative spectral response functions suggest that OLI is measuring 6&thinsp;% to 16&thinsp;% more top-of-atmosphere (TOA) spectral radiance from the Greenland ice sheet surface than was predicted using apparent reflectance spectra from the nadir-viewing spectrometer. While more investigation is required to convert airborne VSWIR spectral radiance into atmospherically corrected airborne surface reflectance, it is expected that airborne science flight data products will contribute to spectroscopic determination of Greenland ice sheet surface optical properties to improve understanding of their potential influence on ICESat-2 measurements.</p>https://www.atmos-meas-tech.net/12/1913/2019/amt-12-1913-2019.pdf