Numerical Simulation of Water Based Ferrofluid Flows along Moving Surfaces

The steady two-dimensional boundary layer flow past a stretching flat sheet in a water-based ferrofluid is investigated. The spatially varying magnetic field is created by two line currents. The similarity method is applied to transform the governing equations into a system of coupled ordinary diffe...

Full description

Bibliographic Details
Main Authors: Gabriella Bognár, Krisztián Hriczó
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/8/7/830
Description
Summary:The steady two-dimensional boundary layer flow past a stretching flat sheet in a water-based ferrofluid is investigated. The spatially varying magnetic field is created by two line currents. The similarity method is applied to transform the governing equations into a system of coupled ordinary differential equations. Numerical investigations are performed for ferrofluids, the suspensions of water, and three types of ferroparticles (magnetite, cobalt ferrite, and Mn-Zn ferrite). The impact of the solid volume fraction, the surface stretching parameter, and the ferromagnetic coefficient on the dimensionless velocity and temperature profiles, the skin friction coefficient, and the local Nusselt number are analysed for the three types of ferrofluid.
ISSN:2227-9717