NAADP-sensitive Сa(2+) stores in permeabilized rat hepatocytes

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a nucleotide that is potent to release calcium from intracellular stores in different cell types. NAADP was shown to target specific type of intracellular store namely endolysosomal system or acidic store. Despite intense studies, its effect o...

Full description

Bibliographic Details
Main Authors: S. V. Bychkova, T. I. Chorna
Format: Article
Language:English
Published: National Academy of Sciences of Ukraine and Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine. 2014-10-01
Series:Ukrainian Biochemical Journal
Subjects:
Online Access:http://ukrbiochemjournal.org/wp-content/uploads/2015/06/Bychkova_5_14.pdf
Description
Summary:Nicotinic acid adenine dinucleotide phosphate (NAADP) is a nucleotide that is potent to release calcium from intracellular stores in different cell types. NAADP was shown to target specific type of intracellular store namely endolysosomal system or acidic store. Despite intense studies, its effect on endoplasmatic reticulum (ER) still remains to be elucidated. The main aim of our work was to investigate NAADP-sensitive store in permeabilized rat hepatocytes monitoring the level of Ca2+ inside intracellular organelles using chlorotetracycline (CTC). We have shown that NAADP triggered changes of stored Ca2+ in rat hepatocytes are dependent on concentration of EGTA-Ca2+-buffer in cell incubation medium, i.e. the higher is the EGTA concentration in incubation medium the smaller or absent is the effect of NAADP. Besides, the effect of NAADP was more pronounced upon cells pretreatment with the inhibitory concentration of ryanodine (100 µM). This might suggest that the effect of NAADP is dependent on ER luminal calcium. We have also found that NAADP-evoked Ca2+ release in permeabilized hepatocytes is sensitive to nigericin, bafilomycin A and thapsigargin. Additionally, NAADP triggered changes in stored Ca2+ were completely abolished by NED-19 as antagonist of NAADP.
ISSN:2409-4943
2409-4943