Quantitative analysis of PPT1 interactome in human neuroblastoma cells

Mutations in the CLN1 gene that encodes Palmitoyl protein thioesterase 1 (PPT1) or CLN1, cause Infantile NCL (INCL, MIM#256730). PPT1 removes long fatty acid chains such as palmitate from modified cysteine residues of proteins. The data shown here result from isolated protein complexes from PPT1-exp...

Full description

Bibliographic Details
Main Authors: Enzo Scifo, Agnieszka Szwajda, Rabah Soliymani, Francesco Pezzini, Marzia Bianchi, Arvydas Dapkunas, Janusz Dębski, Kristiina Uusi-Rauva, Michał Dadlez, Anne-Claude Gingras, Jaana Tyynelä, Alessandro Simonati, Anu Jalanko, Marc H. Baumann, Maciej Lalowski
Format: Article
Language:English
Published: Elsevier 2015-09-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340915000840
Description
Summary:Mutations in the CLN1 gene that encodes Palmitoyl protein thioesterase 1 (PPT1) or CLN1, cause Infantile NCL (INCL, MIM#256730). PPT1 removes long fatty acid chains such as palmitate from modified cysteine residues of proteins. The data shown here result from isolated protein complexes from PPT1-expressing SH-SY5Y stable cells that were subjected to single step affinity purification coupled to mass spectrometry (AP-MS). Prior to the MS analysis, we utilised a modified filter-aided sample preparation (FASP) protocol. Based on label free quantitative analysis of the data by SAINT, 23 PPT1 interacting partners (IP) were identified. A dense connectivity in PPT1 network was further revealed by functional coupling and extended network analyses, linking it to mitochondrial ATP synthesis coupled protein transport and thioester biosynthetic process. Moreover, the terms: inhibition of organismal death, movement disorders and concentration of lipid were predicted to be altered in the PPT1 network. Data presented here are related to Scifo et al. (J. Proteomics, 123 (2015) 42–53).
ISSN:2352-3409