Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs

We present an overview of a proposal in relativistic proton-proton (<inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula>) collisions emphasizing the th...

Full description

Bibliographic Details
Main Authors: Jean Cleymans, Masimba Wellington Paradza
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/2/4/38
id doaj-eec6cd1a49164e298f409970dac1377b
record_format Article
spelling doaj-eec6cd1a49164e298f409970dac1377b2020-12-05T00:03:44ZengMDPI AGPhysics2624-81742020-12-0123865466410.3390/physics2040038Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-OutsJean Cleymans0Masimba Wellington Paradza1UCT-CERN Research Centre and Physics Department, University of Cape Town, Rondebosch 7701, South AfricaUCT-CERN Research Centre and Physics Department, University of Cape Town, Rondebosch 7701, South AfricaWe present an overview of a proposal in relativistic proton-proton (<inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula>) collisions emphasizing the thermal or kinetic freeze-out stage in the framework of the Tsallis distribution. In this paper we take into account the chemical potential present in the Tsallis distribution by following a two step procedure. In the first step we used the redudancy present in the variables such as the system temperature, <i>T</i>, volume, <i>V</i>, Tsallis exponent, <i>q</i>, chemical potential, <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>, and performed all fits by effectively setting to zero the chemical potential. In the second step the value <i>q</i> is kept fixed at the value determined in the first step. This way the complete set of variables <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>V</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> can be determined. The final results show almost no (or at best a very weak) energy dependence in <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula> collisions at the centre-of-mass energy <inline-formula><math display="inline"><semantics><mrow><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>20</mn></mrow></semantics></math></inline-formula> TeV to 13 TeV. The chemical potential <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> at kinetic freeze-out shows a steep increase with beam energy. This considerably simplifies the description of the thermal freeze-out stage in <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula> collisions as the values of <i>T</i> and of the freeze-out radius <i>R</i> remain constant to a good approximation over a wide range of beam energies.https://www.mdpi.com/2624-8174/2/4/38statistical mechanicsthermal modelhigh energy physics
collection DOAJ
language English
format Article
sources DOAJ
author Jean Cleymans
Masimba Wellington Paradza
spellingShingle Jean Cleymans
Masimba Wellington Paradza
Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
Physics
statistical mechanics
thermal model
high energy physics
author_facet Jean Cleymans
Masimba Wellington Paradza
author_sort Jean Cleymans
title Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
title_short Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
title_full Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
title_fullStr Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
title_full_unstemmed Statistical Approaches to High Energy Physics: Chemical and Thermal Freeze-Outs
title_sort statistical approaches to high energy physics: chemical and thermal freeze-outs
publisher MDPI AG
series Physics
issn 2624-8174
publishDate 2020-12-01
description We present an overview of a proposal in relativistic proton-proton (<inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula>) collisions emphasizing the thermal or kinetic freeze-out stage in the framework of the Tsallis distribution. In this paper we take into account the chemical potential present in the Tsallis distribution by following a two step procedure. In the first step we used the redudancy present in the variables such as the system temperature, <i>T</i>, volume, <i>V</i>, Tsallis exponent, <i>q</i>, chemical potential, <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>, and performed all fits by effectively setting to zero the chemical potential. In the second step the value <i>q</i> is kept fixed at the value determined in the first step. This way the complete set of variables <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>V</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> can be determined. The final results show almost no (or at best a very weak) energy dependence in <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula> collisions at the centre-of-mass energy <inline-formula><math display="inline"><semantics><mrow><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>20</mn></mrow></semantics></math></inline-formula> TeV to 13 TeV. The chemical potential <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> at kinetic freeze-out shows a steep increase with beam energy. This considerably simplifies the description of the thermal freeze-out stage in <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula> collisions as the values of <i>T</i> and of the freeze-out radius <i>R</i> remain constant to a good approximation over a wide range of beam energies.
topic statistical mechanics
thermal model
high energy physics
url https://www.mdpi.com/2624-8174/2/4/38
work_keys_str_mv AT jeancleymans statisticalapproachestohighenergyphysicschemicalandthermalfreezeouts
AT masimbawellingtonparadza statisticalapproachestohighenergyphysicschemicalandthermalfreezeouts
_version_ 1724400254154964992