Adaptive optics enhanced sensitivity in Fabry-Pérot based photoacoustic tomography

All-optical ultrasound detection bears a number of unique advantages for photoacoustic tomography, including the ability for high resolution sampling of the acoustic field and its compatibility with a wide variety of other optical modalities. However, optical schemes based on miniaturized cavities a...

Full description

Bibliographic Details
Main Authors: Jakub Czuchnowski, Robert Prevedel
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597921000379
Description
Summary:All-optical ultrasound detection bears a number of unique advantages for photoacoustic tomography, including the ability for high resolution sampling of the acoustic field and its compatibility with a wide variety of other optical modalities. However, optical schemes based on miniaturized cavities are sensitive to optical aberrations as well as manufacturing-induced cavity imperfections which degrade sensor sensitivity and deteriorate photoacoustic image quality. Here we present an experimental method based on adaptive optics that is capable of enhancing the overall sensitivity of Fabry-Pérot based photoacoustic sensors. We experimentally observe clear improvements in photoacoustic signal detection as well as overall image quality after photoacoustic tomography reconstructions when applied to mammalian tissues in vivo.
ISSN:2213-5979