High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.

Chronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β ce...

Full description

Bibliographic Details
Main Authors: Ronne Wee Yeh Yeo, Kaiyuan Yang, GuoDong Li, Sai Kiang Lim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3443235?pdf=render
id doaj-efd304f533d540a8825c2fb266c94f27
record_format Article
spelling doaj-efd304f533d540a8825c2fb266c94f272020-11-25T02:08:05ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0179e4498810.1371/journal.pone.0044988High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.Ronne Wee Yeh YeoKaiyuan YangGuoDong LiSai Kiang LimChronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β cells, we analyzed gene expression in ERoSHK6, a mouse insulin-secreting cell line after chronic HG exposure (six-day exposure to 33.3 mM glucose). Chronic HG exposure which reduced glucose-stimulated insulin secretion (GSIS) increased transcript levels of 185 genes that clustered primarily in 5 processes namely cellular growth and proliferation; cell death; cellular assembly and organization; cell morphology; and cell-to-cell signaling and interaction. The former two were validated by increased apoptosis of ERoSHK6 cells after chronic HG exposure and reaffirmed the vulnerability of β cells to glucotoxicity. The three remaining processes were partially substantiated by changes in cellular morphology and structure, and instigated an investigation of the cytoskeleton and cell-cell adhesion. These studies revealed a depolymerized actin cytoskeleton that lacked actin stress fibers anchored at vinculin-containing focal adhesion sites as well as loss of E-cadherin-mediated cell-cell adherence after exposure to chronic HG, and were concomitant with constitutive ERK1/2 phosphorylation that was refractory to serum and glucose deprivation. Although inhibition of ERK phosphorylation by PD98059 promoted actin polymerization, it increased apoptosis and GSIS impairment. These findings suggest that ERK phosphorylation is a proximate regulator of cellular processes targeted by chronic HG-induced gene expression and that dynamic actin polymerization and depolymerization is important in β cell survival and function. Therefore, chronic HG alters gene expression and signal transduction to predispose the cytoskeleton towards apoptosis and GSIS impairment.http://europepmc.org/articles/PMC3443235?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Ronne Wee Yeh Yeo
Kaiyuan Yang
GuoDong Li
Sai Kiang Lim
spellingShingle Ronne Wee Yeh Yeo
Kaiyuan Yang
GuoDong Li
Sai Kiang Lim
High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
PLoS ONE
author_facet Ronne Wee Yeh Yeo
Kaiyuan Yang
GuoDong Li
Sai Kiang Lim
author_sort Ronne Wee Yeh Yeo
title High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
title_short High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
title_full High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
title_fullStr High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
title_full_unstemmed High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
title_sort high glucose predisposes gene expression and erk phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description Chronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β cells, we analyzed gene expression in ERoSHK6, a mouse insulin-secreting cell line after chronic HG exposure (six-day exposure to 33.3 mM glucose). Chronic HG exposure which reduced glucose-stimulated insulin secretion (GSIS) increased transcript levels of 185 genes that clustered primarily in 5 processes namely cellular growth and proliferation; cell death; cellular assembly and organization; cell morphology; and cell-to-cell signaling and interaction. The former two were validated by increased apoptosis of ERoSHK6 cells after chronic HG exposure and reaffirmed the vulnerability of β cells to glucotoxicity. The three remaining processes were partially substantiated by changes in cellular morphology and structure, and instigated an investigation of the cytoskeleton and cell-cell adhesion. These studies revealed a depolymerized actin cytoskeleton that lacked actin stress fibers anchored at vinculin-containing focal adhesion sites as well as loss of E-cadherin-mediated cell-cell adherence after exposure to chronic HG, and were concomitant with constitutive ERK1/2 phosphorylation that was refractory to serum and glucose deprivation. Although inhibition of ERK phosphorylation by PD98059 promoted actin polymerization, it increased apoptosis and GSIS impairment. These findings suggest that ERK phosphorylation is a proximate regulator of cellular processes targeted by chronic HG-induced gene expression and that dynamic actin polymerization and depolymerization is important in β cell survival and function. Therefore, chronic HG alters gene expression and signal transduction to predispose the cytoskeleton towards apoptosis and GSIS impairment.
url http://europepmc.org/articles/PMC3443235?pdf=render
work_keys_str_mv AT ronneweeyehyeo highglucosepredisposesgeneexpressionanderkphosphorylationtoapoptosisandimpairedglucosestimulatedinsulinsecretionviathecytoskeleton
AT kaiyuanyang highglucosepredisposesgeneexpressionanderkphosphorylationtoapoptosisandimpairedglucosestimulatedinsulinsecretionviathecytoskeleton
AT guodongli highglucosepredisposesgeneexpressionanderkphosphorylationtoapoptosisandimpairedglucosestimulatedinsulinsecretionviathecytoskeleton
AT saikianglim highglucosepredisposesgeneexpressionanderkphosphorylationtoapoptosisandimpairedglucosestimulatedinsulinsecretionviathecytoskeleton
_version_ 1724927601166778368