Novel (E)-β-Farnesene Analogues Containing 2-Nitroiminohexahydro-1,3,5-triazine: Synthesis and Biological Activity Evaluation

In order to discover novel eco-friendly compounds with good activity for aphid control, (E)-β-farnesene (EβF), the main component of the aphid alarm pheromone, was chosen as the lead compound. By introducing a 2-nitroimino-hexahydro-1,3,5-triazine moiety (abbreviated NHT) to replace the unstable con...

Full description

Bibliographic Details
Main Authors: Yaoguo Qin, Jingpeng Zhang, Dunlun Song, Hongxia Duan, Wenhao Li, Xinling Yang
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/21/7/825
Description
Summary:In order to discover novel eco-friendly compounds with good activity for aphid control, (E)-β-farnesene (EβF), the main component of the aphid alarm pheromone, was chosen as the lead compound. By introducing a 2-nitroimino-hexahydro-1,3,5-triazine moiety (abbreviated NHT) to replace the unstable conjugated double bond system of EβF, a series of novel EβF analogues containing the NHT moiety were synthesized via the reaction of substituted NHT rings with (E)-1-chloro-3,7-dimethylocta-2,6-diene. All the compounds were characterized by 1H-NMR, 13C-NMR, IR, and high resolution mass spectroscopy (HRMS). The bioassay results showed that all the analogues displayed different repellent and aphicidal activities against green peach aphid (Myzus persicae). Particularly, the analogue 4r exhibited obvious repellent activity (repellent proportion: 78.43%) and similar aphicidal activity against M. persicae (mortality: 82.05%) as the commercial compound pymetrozine (80.07%). A preliminary structure-activity relationship (SAR) study was also performed, which offered valuable clues for the design of further new EβF analogues.
ISSN:1420-3049