Compartmentalization of the Edinburgh Human Metabolic Network

<p>Abstract</p> <p>Background</p> <p>Direct in vivo investigation of human metabolism is complicated by the distinct metabolic functions of various sub-cellular organelles. Diverse micro-environments in different organelles may lead to distinct functions of the same pro...

Full description

Bibliographic Details
Main Authors: Hao Tong, Ma Hong-Wu, Zhao Xue-Ming, Goryanin Igor
Format: Article
Language:English
Published: BMC 2010-07-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/11/393
id doaj-f089fea847e14ed8a0b08f3c22104268
record_format Article
spelling doaj-f089fea847e14ed8a0b08f3c221042682020-11-25T00:35:52ZengBMCBMC Bioinformatics1471-21052010-07-0111139310.1186/1471-2105-11-393Compartmentalization of the Edinburgh Human Metabolic NetworkHao TongMa Hong-WuZhao Xue-MingGoryanin Igor<p>Abstract</p> <p>Background</p> <p>Direct in vivo investigation of human metabolism is complicated by the distinct metabolic functions of various sub-cellular organelles. Diverse micro-environments in different organelles may lead to distinct functions of the same protein and the use of different enzymes for the same metabolic reaction. To better understand the complexity in the human metabolism, a compartmentalized human metabolic network with integrated sub-cellular location information is required.</p> <p>Results</p> <p>We extended the previously reconstructed Edinburgh Human Metabolic Network (EHMN) [Ma, et al. Molecular Systems Biology, 3:135, 2007] by integrating the sub-cellular location information for the reactions, adding transport reactions and refining the protein-reaction relationships based on the location information. Firstly, protein location information was obtained from Gene Ontology and complemented by a Swiss-Prot location keywords search. Then all the reactions in EHMN were assigned to a location based on the protein-reaction relationships to get a preliminary compartmentalized network. We investigated the localized sub-networks in each pathway to identify gaps and isolated reactions by connectivity analysis and refined the location information based on information from literature. As a result, location information for hundreds of reactions was revised and hundreds of incorrect protein-reaction relationships were corrected. Over 1400 transport reactions were added to link the location specific metabolic network. To validate the network, we have done pathway analysis to examine the capability of the network to synthesize or degrade certain key metabolites. Compared with a previously published human metabolic network (Human Recon 1), our network contains over 1000 more reactions assigned to clear cellular compartments.</p> <p>Conclusions</p> <p>By combining protein location information, network connectivity analysis and manual literature search, we have reconstructed a more complete compartmentalized human metabolic network. The whole network is available at <url>http://www.ehmn.bioinformatics.ed.ac.uk</url> and free for academic use.</p> http://www.biomedcentral.com/1471-2105/11/393
collection DOAJ
language English
format Article
sources DOAJ
author Hao Tong
Ma Hong-Wu
Zhao Xue-Ming
Goryanin Igor
spellingShingle Hao Tong
Ma Hong-Wu
Zhao Xue-Ming
Goryanin Igor
Compartmentalization of the Edinburgh Human Metabolic Network
BMC Bioinformatics
author_facet Hao Tong
Ma Hong-Wu
Zhao Xue-Ming
Goryanin Igor
author_sort Hao Tong
title Compartmentalization of the Edinburgh Human Metabolic Network
title_short Compartmentalization of the Edinburgh Human Metabolic Network
title_full Compartmentalization of the Edinburgh Human Metabolic Network
title_fullStr Compartmentalization of the Edinburgh Human Metabolic Network
title_full_unstemmed Compartmentalization of the Edinburgh Human Metabolic Network
title_sort compartmentalization of the edinburgh human metabolic network
publisher BMC
series BMC Bioinformatics
issn 1471-2105
publishDate 2010-07-01
description <p>Abstract</p> <p>Background</p> <p>Direct in vivo investigation of human metabolism is complicated by the distinct metabolic functions of various sub-cellular organelles. Diverse micro-environments in different organelles may lead to distinct functions of the same protein and the use of different enzymes for the same metabolic reaction. To better understand the complexity in the human metabolism, a compartmentalized human metabolic network with integrated sub-cellular location information is required.</p> <p>Results</p> <p>We extended the previously reconstructed Edinburgh Human Metabolic Network (EHMN) [Ma, et al. Molecular Systems Biology, 3:135, 2007] by integrating the sub-cellular location information for the reactions, adding transport reactions and refining the protein-reaction relationships based on the location information. Firstly, protein location information was obtained from Gene Ontology and complemented by a Swiss-Prot location keywords search. Then all the reactions in EHMN were assigned to a location based on the protein-reaction relationships to get a preliminary compartmentalized network. We investigated the localized sub-networks in each pathway to identify gaps and isolated reactions by connectivity analysis and refined the location information based on information from literature. As a result, location information for hundreds of reactions was revised and hundreds of incorrect protein-reaction relationships were corrected. Over 1400 transport reactions were added to link the location specific metabolic network. To validate the network, we have done pathway analysis to examine the capability of the network to synthesize or degrade certain key metabolites. Compared with a previously published human metabolic network (Human Recon 1), our network contains over 1000 more reactions assigned to clear cellular compartments.</p> <p>Conclusions</p> <p>By combining protein location information, network connectivity analysis and manual literature search, we have reconstructed a more complete compartmentalized human metabolic network. The whole network is available at <url>http://www.ehmn.bioinformatics.ed.ac.uk</url> and free for academic use.</p>
url http://www.biomedcentral.com/1471-2105/11/393
work_keys_str_mv AT haotong compartmentalizationoftheedinburghhumanmetabolicnetwork
AT mahongwu compartmentalizationoftheedinburghhumanmetabolicnetwork
AT zhaoxueming compartmentalizationoftheedinburghhumanmetabolicnetwork
AT goryaninigor compartmentalizationoftheedinburghhumanmetabolicnetwork
_version_ 1725307391338086400