The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-11-01
|
Series: | Frontiers in Bioengineering and Biotechnology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/full |
id |
doaj-f100e2b18d264ab78a0f3b16e94a76a0 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Andreas Elanzew Andreas Elanzew Bastian Nießing Daniel Langendoerfer Oliver Rippel Oliver Rippel Tobias Piotrowski Friedrich Schenk Michael Kulik Michael Peitz Michael Peitz Yannik Breitkreuz Yannik Breitkreuz Sven Jung Paul Wanek Paul Wanek Laura Stappert Robert H. Schmitt Robert H. Schmitt Simone Haupt Simone Haupt Martin Zenke Martin Zenke Niels König Oliver Brüstle Oliver Brüstle |
spellingShingle |
Andreas Elanzew Andreas Elanzew Bastian Nießing Daniel Langendoerfer Oliver Rippel Oliver Rippel Tobias Piotrowski Friedrich Schenk Michael Kulik Michael Peitz Michael Peitz Yannik Breitkreuz Yannik Breitkreuz Sven Jung Paul Wanek Paul Wanek Laura Stappert Robert H. Schmitt Robert H. Schmitt Simone Haupt Simone Haupt Martin Zenke Martin Zenke Niels König Oliver Brüstle Oliver Brüstle The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells Frontiers in Bioengineering and Biotechnology automation cell culture reprogramming induced pluripotent stem cells cell production |
author_facet |
Andreas Elanzew Andreas Elanzew Bastian Nießing Daniel Langendoerfer Oliver Rippel Oliver Rippel Tobias Piotrowski Friedrich Schenk Michael Kulik Michael Peitz Michael Peitz Yannik Breitkreuz Yannik Breitkreuz Sven Jung Paul Wanek Paul Wanek Laura Stappert Robert H. Schmitt Robert H. Schmitt Simone Haupt Simone Haupt Martin Zenke Martin Zenke Niels König Oliver Brüstle Oliver Brüstle |
author_sort |
Andreas Elanzew |
title |
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells |
title_short |
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells |
title_full |
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells |
title_fullStr |
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells |
title_full_unstemmed |
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells |
title_sort |
stemcellfactory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Bioengineering and Biotechnology |
issn |
2296-4185 |
publishDate |
2020-11-01 |
description |
While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality. |
topic |
automation cell culture reprogramming induced pluripotent stem cells cell production |
url |
https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/full |
work_keys_str_mv |
AT andreaselanzew thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT andreaselanzew thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT bastiannießing thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT daniellangendoerfer thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverrippel thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverrippel thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT tobiaspiotrowski thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT friedrichschenk thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelkulik thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelpeitz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelpeitz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT yannikbreitkreuz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT yannikbreitkreuz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT svenjung thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT paulwanek thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT paulwanek thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT laurastappert thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT roberthschmitt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT roberthschmitt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT simonehaupt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT simonehaupt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT martinzenke thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT martinzenke thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT nielskonig thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverbrustle thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverbrustle thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT andreaselanzew stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT andreaselanzew stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT bastiannießing stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT daniellangendoerfer stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverrippel stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverrippel stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT tobiaspiotrowski stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT friedrichschenk stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelkulik stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelpeitz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT michaelpeitz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT yannikbreitkreuz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT yannikbreitkreuz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT svenjung stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT paulwanek stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT paulwanek stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT laurastappert stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT roberthschmitt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT roberthschmitt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT simonehaupt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT simonehaupt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT martinzenke stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT martinzenke stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT nielskonig stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverbrustle stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells AT oliverbrustle stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells |
_version_ |
1724434697267707904 |
spelling |
doaj-f100e2b18d264ab78a0f3b16e94a76a02020-11-25T04:05:18ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-11-01810.3389/fbioe.2020.580352580352The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem CellsAndreas Elanzew0Andreas Elanzew1Bastian Nießing2Daniel Langendoerfer3Oliver Rippel4Oliver Rippel5Tobias Piotrowski6Friedrich Schenk7Michael Kulik8Michael Peitz9Michael Peitz10Yannik Breitkreuz11Yannik Breitkreuz12Sven Jung13Paul Wanek14Paul Wanek15Laura Stappert16Robert H. Schmitt17Robert H. Schmitt18Simone Haupt19Simone Haupt20Martin Zenke21Martin Zenke22Niels König23Oliver Brüstle24Oliver Brüstle25Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyCell Programming Core Facility, University of Bonn Medical Faculty, Bonn, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, GermanyHelmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyLaboratory for Machine Tools and Production, RWTH Aachen University, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyInstitute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, GermanyHelmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyWhile human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality.https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/fullautomationcell culturereprogramminginduced pluripotent stem cellscell production |