The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells

While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and...

Full description

Bibliographic Details
Main Authors: Andreas Elanzew, Bastian Nießing, Daniel Langendoerfer, Oliver Rippel, Tobias Piotrowski, Friedrich Schenk, Michael Kulik, Michael Peitz, Yannik Breitkreuz, Sven Jung, Paul Wanek, Laura Stappert, Robert H. Schmitt, Simone Haupt, Martin Zenke, Niels König, Oliver Brüstle
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-11-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/full
id doaj-f100e2b18d264ab78a0f3b16e94a76a0
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Andreas Elanzew
Andreas Elanzew
Bastian Nießing
Daniel Langendoerfer
Oliver Rippel
Oliver Rippel
Tobias Piotrowski
Friedrich Schenk
Michael Kulik
Michael Peitz
Michael Peitz
Yannik Breitkreuz
Yannik Breitkreuz
Sven Jung
Paul Wanek
Paul Wanek
Laura Stappert
Robert H. Schmitt
Robert H. Schmitt
Simone Haupt
Simone Haupt
Martin Zenke
Martin Zenke
Niels König
Oliver Brüstle
Oliver Brüstle
spellingShingle Andreas Elanzew
Andreas Elanzew
Bastian Nießing
Daniel Langendoerfer
Oliver Rippel
Oliver Rippel
Tobias Piotrowski
Friedrich Schenk
Michael Kulik
Michael Peitz
Michael Peitz
Yannik Breitkreuz
Yannik Breitkreuz
Sven Jung
Paul Wanek
Paul Wanek
Laura Stappert
Robert H. Schmitt
Robert H. Schmitt
Simone Haupt
Simone Haupt
Martin Zenke
Martin Zenke
Niels König
Oliver Brüstle
Oliver Brüstle
The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
Frontiers in Bioengineering and Biotechnology
automation
cell culture
reprogramming
induced pluripotent stem cells
cell production
author_facet Andreas Elanzew
Andreas Elanzew
Bastian Nießing
Daniel Langendoerfer
Oliver Rippel
Oliver Rippel
Tobias Piotrowski
Friedrich Schenk
Michael Kulik
Michael Peitz
Michael Peitz
Yannik Breitkreuz
Yannik Breitkreuz
Sven Jung
Paul Wanek
Paul Wanek
Laura Stappert
Robert H. Schmitt
Robert H. Schmitt
Simone Haupt
Simone Haupt
Martin Zenke
Martin Zenke
Niels König
Oliver Brüstle
Oliver Brüstle
author_sort Andreas Elanzew
title The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
title_short The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
title_full The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
title_fullStr The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
title_full_unstemmed The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells
title_sort stemcellfactory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells
publisher Frontiers Media S.A.
series Frontiers in Bioengineering and Biotechnology
issn 2296-4185
publishDate 2020-11-01
description While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality.
topic automation
cell culture
reprogramming
induced pluripotent stem cells
cell production
url https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/full
work_keys_str_mv AT andreaselanzew thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT andreaselanzew thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT bastiannießing thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT daniellangendoerfer thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverrippel thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverrippel thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT tobiaspiotrowski thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT friedrichschenk thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelkulik thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelpeitz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelpeitz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT yannikbreitkreuz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT yannikbreitkreuz thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT svenjung thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT paulwanek thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT paulwanek thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT laurastappert thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT roberthschmitt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT roberthschmitt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT simonehaupt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT simonehaupt thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT martinzenke thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT martinzenke thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT nielskonig thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverbrustle thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverbrustle thestemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT andreaselanzew stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT andreaselanzew stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT bastiannießing stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT daniellangendoerfer stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverrippel stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverrippel stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT tobiaspiotrowski stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT friedrichschenk stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelkulik stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelpeitz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT michaelpeitz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT yannikbreitkreuz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT yannikbreitkreuz stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT svenjung stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT paulwanek stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT paulwanek stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT laurastappert stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT roberthschmitt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT roberthschmitt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT simonehaupt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT simonehaupt stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT martinzenke stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT martinzenke stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT nielskonig stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverbrustle stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
AT oliverbrustle stemcellfactoryamodularsystemintegrationforautomatedgenerationandexpansionofhumaninducedpluripotentstemcells
_version_ 1724434697267707904
spelling doaj-f100e2b18d264ab78a0f3b16e94a76a02020-11-25T04:05:18ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-11-01810.3389/fbioe.2020.580352580352The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem CellsAndreas Elanzew0Andreas Elanzew1Bastian Nießing2Daniel Langendoerfer3Oliver Rippel4Oliver Rippel5Tobias Piotrowski6Friedrich Schenk7Michael Kulik8Michael Peitz9Michael Peitz10Yannik Breitkreuz11Yannik Breitkreuz12Sven Jung13Paul Wanek14Paul Wanek15Laura Stappert16Robert H. Schmitt17Robert H. Schmitt18Simone Haupt19Simone Haupt20Martin Zenke21Martin Zenke22Niels König23Oliver Brüstle24Oliver Brüstle25Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyCell Programming Core Facility, University of Bonn Medical Faculty, Bonn, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, GermanyHelmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyLaboratory for Machine Tools and Production, RWTH Aachen University, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyInstitute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, GermanyHelmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, GermanyFraunhofer Institute for Production Technology, Aachen, GermanyInstitute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, GermanyLIFE&BRAIN GmbH, Cellomics Unit, Bonn, GermanyWhile human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality.https://www.frontiersin.org/articles/10.3389/fbioe.2020.580352/fullautomationcell culturereprogramminginduced pluripotent stem cellscell production