On the eigenvalue counting function for Schrödinger operator: some upper bounds

The aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet bound...

Full description

Bibliographic Details
Main Author: Fabio Cipriani
Format: Article
Language:English
Published: Sapienza Università Editrice 2018-01-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.html
id doaj-f163ce49b54b4ee9b6b2c3556fcb19f4
record_format Article
spelling doaj-f163ce49b54b4ee9b6b2c3556fcb19f42020-11-25T02:47:17ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502018-01-0139257276On the eigenvalue counting function for Schrödinger operator: some upper boundsFabio Cipriani0Dipartimento di Matematica, Politecnico di MilanoThe aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet boundary conditions on the subpotential domain {V < e}, endowed with weighted Lebesgue measure (V − e)− · dx and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface {V = e}.http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.htmlSchr¨odinger operatorseigenvalues counting functionDirichlet-to-Neumann operator
collection DOAJ
language English
format Article
sources DOAJ
author Fabio Cipriani
spellingShingle Fabio Cipriani
On the eigenvalue counting function for Schrödinger operator: some upper bounds
Rendiconti di Matematica e delle Sue Applicazioni
Schr¨odinger operators
eigenvalues counting function
Dirichlet-to-Neumann operator
author_facet Fabio Cipriani
author_sort Fabio Cipriani
title On the eigenvalue counting function for Schrödinger operator: some upper bounds
title_short On the eigenvalue counting function for Schrödinger operator: some upper bounds
title_full On the eigenvalue counting function for Schrödinger operator: some upper bounds
title_fullStr On the eigenvalue counting function for Schrödinger operator: some upper bounds
title_full_unstemmed On the eigenvalue counting function for Schrödinger operator: some upper bounds
title_sort on the eigenvalue counting function for schrödinger operator: some upper bounds
publisher Sapienza Università Editrice
series Rendiconti di Matematica e delle Sue Applicazioni
issn 1120-7183
2532-3350
publishDate 2018-01-01
description The aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet boundary conditions on the subpotential domain {V < e}, endowed with weighted Lebesgue measure (V − e)− · dx and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface {V = e}.
topic Schr¨odinger operators
eigenvalues counting function
Dirichlet-to-Neumann operator
url http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.html
work_keys_str_mv AT fabiocipriani ontheeigenvaluecountingfunctionforschrodingeroperatorsomeupperbounds
_version_ 1724753648512139264