On the eigenvalue counting function for Schrödinger operator: some upper bounds
The aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet bound...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
2018-01-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.html |
id |
doaj-f163ce49b54b4ee9b6b2c3556fcb19f4 |
---|---|
record_format |
Article |
spelling |
doaj-f163ce49b54b4ee9b6b2c3556fcb19f42020-11-25T02:47:17ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502018-01-0139257276On the eigenvalue counting function for Schrödinger operator: some upper boundsFabio Cipriani0Dipartimento di Matematica, Politecnico di MilanoThe aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet boundary conditions on the subpotential domain {V < e}, endowed with weighted Lebesgue measure (V − e)− · dx and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface {V = e}.http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.htmlSchr¨odinger operatorseigenvalues counting functionDirichlet-to-Neumann operator |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fabio Cipriani |
spellingShingle |
Fabio Cipriani On the eigenvalue counting function for Schrödinger operator: some upper bounds Rendiconti di Matematica e delle Sue Applicazioni Schr¨odinger operators eigenvalues counting function Dirichlet-to-Neumann operator |
author_facet |
Fabio Cipriani |
author_sort |
Fabio Cipriani |
title |
On the eigenvalue counting function for Schrödinger operator: some upper bounds |
title_short |
On the eigenvalue counting function for Schrödinger operator: some upper bounds |
title_full |
On the eigenvalue counting function for Schrödinger operator: some upper bounds |
title_fullStr |
On the eigenvalue counting function for Schrödinger operator: some upper bounds |
title_full_unstemmed |
On the eigenvalue counting function for Schrödinger operator: some upper bounds |
title_sort |
on the eigenvalue counting function for schrödinger operator: some upper bounds |
publisher |
Sapienza Università Editrice |
series |
Rendiconti di Matematica e delle Sue Applicazioni |
issn |
1120-7183 2532-3350 |
publishDate |
2018-01-01 |
description |
The aim of this work is to provide an upper bound on the eigenvalues counting function N(Rn, −∆+V, e) of a Schr¨odinger operator −∆+V on R^n corresponding to a potential V ∈ L^(n/2 +ε) (Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet integral D with Dirichlet boundary conditions on the subpotential domain {V < e}, endowed with weighted Lebesgue measure (V − e)− · dx and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface {V = e}. |
topic |
Schr¨odinger operators eigenvalues counting function Dirichlet-to-Neumann operator |
url |
http://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_257-276.html |
work_keys_str_mv |
AT fabiocipriani ontheeigenvaluecountingfunctionforschrodingeroperatorsomeupperbounds |
_version_ |
1724753648512139264 |