From nanotubes to single crystals: Co doped TiO2

Millimeter-sized cobalt doped rutile crystals with a bi-pyramidal shape are obtained by chemical vapour transport using scroll-type H2Ti3O7 nanotubes as a precursor in which Co2+ ions are introduced by a simple ion exchange method prior to the growth. Despite the low concentration of Co2+ dopants (5...

Full description

Bibliographic Details
Main Authors: J. Jaćimović, E. Horváth, B. Náfrádi, R. Gaál, N. Nikseresht, H. Berger, L. Forró, A. Magrez
Format: Article
Language:English
Published: AIP Publishing LLC 2013-09-01
Series:APL Materials
Online Access:http://link.aip.org/link/doi/10.1063/1.4820438
Description
Summary:Millimeter-sized cobalt doped rutile crystals with a bi-pyramidal shape are obtained by chemical vapour transport using scroll-type H2Ti3O7 nanotubes as a precursor in which Co2+ ions are introduced by a simple ion exchange method prior to the growth. Despite the low concentration of Co2+ dopants (5 × 1019 cm−3), the resistivity of the single crystal shows a metallic behaviour above 50 K and the Seebeck coefficient has the signatures of polaronic quasiparticles. The magnetic properties of the material show a weak anti-ferromagnetic interaction between the spins on Co atoms below 50 K. This synthesis method could be beneficial for the growth of a large variety of doped TiO2 single crystals.
ISSN:2166-532X