Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product

Microalgae have been considered as a promising biomass for biofuel production, but freshwater resource consumption during the scaled-up cultivation are still a challenge. Obtaining robust marine strains capable of producing triacylglycerols and high value-added metabolites are critical for overcomin...

Full description

Bibliographic Details
Main Authors: Shulin Chen, Juankun Zhang, Dongguang Xiao, Yuyong Hou, Zhiyong Liu, Chenfeng Liu, Fangjian Chen
Format: Article
Language:English
Published: MDPI AG 2013-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/6/6/2759
Description
Summary:Microalgae have been considered as a promising biomass for biofuel production, but freshwater resource consumption during the scaled-up cultivation are still a challenge. Obtaining robust marine strains capable of producing triacylglycerols and high value-added metabolites are critical for overcoming the limitations of water resources and economical feasibility. In this study, a marine microalga with lipid and astaxanthin accumulation capability was isolated from Bohai Bay, China. The alga was named as Coelastrum sp. HA-1 based on its morphological and molecular identification. The major characteristics of HA-1 and the effects of nitrogen on its lipid and astaxanthin accumulations were investigated. Results indicated that the highest biomass, lipid and astaxanthin yields achieved were 50.9 g m−2 day−1, 18.0 g m−2 day−1 and 168.9 mg m−2 day−1, respectively, after cultivation for 24 days. The fatty acids of HA-1, identified in their majority as oleic acid (56.6%) and palmitic acid (25.9%), are desirable biofuel feedstocks. In addition, this alga can be harvested with simple sedimentation, achieving 98.2% removal efficiency after settling for 24 h. These results suggest that Coelastrum sp. HA-1 has several desirable key features that make it a potential candidate for biofuel production.
ISSN:1996-1073