An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico

There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions th...

Full description

Bibliographic Details
Main Authors: Luis M. Hernández-Triana, Javier A. Garza-Hernández, Aldo I. Ortega Morales, Sean W. J. Prosser, Paul D. N. Hebert, Nadya I. Nikolova, Elsa Barrero, Erick de J. de Luna-Santillana, Vicente H. González-Alvarez, Ramón Mendez-López, Rahuel J. Chan-Chable, Anthony R. Fooks, Mario A. Rodríguez-Pérez
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Veterinary Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fvets.2020.564791/full
id doaj-f23fb2c0784a42648c75db9ee55362fb
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Luis M. Hernández-Triana
Javier A. Garza-Hernández
Aldo I. Ortega Morales
Sean W. J. Prosser
Paul D. N. Hebert
Nadya I. Nikolova
Elsa Barrero
Erick de J. de Luna-Santillana
Vicente H. González-Alvarez
Ramón Mendez-López
Rahuel J. Chan-Chable
Anthony R. Fooks
Mario A. Rodríguez-Pérez
spellingShingle Luis M. Hernández-Triana
Javier A. Garza-Hernández
Aldo I. Ortega Morales
Sean W. J. Prosser
Paul D. N. Hebert
Nadya I. Nikolova
Elsa Barrero
Erick de J. de Luna-Santillana
Vicente H. González-Alvarez
Ramón Mendez-López
Rahuel J. Chan-Chable
Anthony R. Fooks
Mario A. Rodríguez-Pérez
An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
Frontiers in Veterinary Science
bloodmeals
mosquitoes
cytochrome c oxidase I
DNA barcoding
chiapas state
Mexico
author_facet Luis M. Hernández-Triana
Javier A. Garza-Hernández
Aldo I. Ortega Morales
Sean W. J. Prosser
Paul D. N. Hebert
Nadya I. Nikolova
Elsa Barrero
Erick de J. de Luna-Santillana
Vicente H. González-Alvarez
Ramón Mendez-López
Rahuel J. Chan-Chable
Anthony R. Fooks
Mario A. Rodríguez-Pérez
author_sort Luis M. Hernández-Triana
title An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_short An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_full An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_fullStr An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_full_unstemmed An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_sort integrated molecular approach to untangling host–vector–pathogen interactions in mosquitoes (diptera: culicidae) from sylvan communities in mexico
publisher Frontiers Media S.A.
series Frontiers in Veterinary Science
issn 2297-1769
publishDate 2021-03-01
description There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase–polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host–vector–pathogen interactions.
topic bloodmeals
mosquitoes
cytochrome c oxidase I
DNA barcoding
chiapas state
Mexico
url https://www.frontiersin.org/articles/10.3389/fvets.2020.564791/full
work_keys_str_mv AT luismhernandeztriana anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT javieragarzahernandez anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT aldoiortegamorales anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT seanwjprosser anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT pauldnhebert anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT nadyainikolova anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT elsabarrero anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT erickdejdelunasantillana anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT vicentehgonzalezalvarez anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT ramonmendezlopez anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT rahueljchanchable anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT anthonyrfooks anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT marioarodriguezperez anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT luismhernandeztriana integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT javieragarzahernandez integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT aldoiortegamorales integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT seanwjprosser integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT pauldnhebert integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT nadyainikolova integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT elsabarrero integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT erickdejdelunasantillana integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT vicentehgonzalezalvarez integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT ramonmendezlopez integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT rahueljchanchable integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT anthonyrfooks integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT marioarodriguezperez integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
_version_ 1724226988052316160
spelling doaj-f23fb2c0784a42648c75db9ee55362fb2021-03-10T06:39:56ZengFrontiers Media S.A.Frontiers in Veterinary Science2297-17692021-03-01710.3389/fvets.2020.564791564791An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in MexicoLuis M. Hernández-Triana0Javier A. Garza-Hernández1Aldo I. Ortega Morales2Sean W. J. Prosser3Paul D. N. Hebert4Nadya I. Nikolova5Elsa Barrero6Erick de J. de Luna-Santillana7Vicente H. González-Alvarez8Ramón Mendez-López9Rahuel J. Chan-Chable10Anthony R. Fooks11Mario A. Rodríguez-Pérez12Animal and Plant Health Agency, Virology Department, Rabies and Wildlife Zoonoses Research Group, Addlestone, United KingdomInstituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, MexicoDepartamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez y Carretera a Santa Fe, Torreón, MexicoCenter for Biodiversity Genomics, University of Guelph, Guelph, ON, CanadaCenter for Biodiversity Genomics, University of Guelph, Guelph, ON, CanadaCenter for Biodiversity Genomics, University of Guelph, Guelph, ON, CanadaAnimal and Plant Health Agency, Virology Department, Rabies and Wildlife Zoonoses Research Group, Addlestone, United KingdomInstituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, MexicoFacultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Chilpancingo, MexicoDepartamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez y Carretera a Santa Fe, Torreón, MexicoDepartamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez y Carretera a Santa Fe, Torreón, MexicoAnimal and Plant Health Agency, Virology Department, Rabies and Wildlife Zoonoses Research Group, Addlestone, United KingdomInstituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, MexicoThere are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase–polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host–vector–pathogen interactions.https://www.frontiersin.org/articles/10.3389/fvets.2020.564791/fullbloodmealsmosquitoescytochrome c oxidase IDNA barcodingchiapas stateMexico