Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA)

Abstract Background The emergence of serious issues of multidrug resistance in the past few years have enforced the use of bacteriocins for combating infections. Threat posed to public health by various multidrug resistant (MDR) organisms can be resolved by discovering new antimicrobial proteins wit...

Full description

Bibliographic Details
Main Authors: Asma Ansari, Rashida Rahmat Zohra, Omer Mukhtar Tarar, Shah Ali Ul Qader, Afsheen Aman
Format: Article
Language:English
Published: BMC 2018-11-01
Series:BMC Microbiology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12866-018-1337-y
Description
Summary:Abstract Background The emergence of serious issues of multidrug resistance in the past few years have enforced the use of bacteriocins for combating infections. Threat posed to public health by various multidrug resistant (MDR) organisms can be resolved by discovering new antimicrobial proteins with broad spectrum of inhibition. Results In the current study, Bacteriocin (BAC-IB17) produced by Bacillus subtilis KIBGE-IB17 is found to be effective against different strains of methicillin resistant Staphylococcus aureus (MRSA). The approximate molecular mass of BAC-IB17 is 10.7 kDa. This unique bacteriocin is found to be highly thermostable and pH stable in nature. It also showed its stability against various heavy metals, organic solvents, surfactants and proteolytic enzymes. Amino acid profile of BAC-IB17 clearly showed that this protein mainly consists of non-polar and basic amino acids whereas; some acidic amino acids were also detected. Sequence of first 15 amino acid residues obtained from N-terminal sequencing of BAC-IB17 were NKPEALVDYTGVXNS. Conclusions The anti-MRSA property of purified bacteriocin may be used to prevent the spread of MRSA infections. Remarkable features of BAC-IB17 suggests its applications in various pharmaceutical and food industries as it can function under a variety of harsh environmental conditions.
ISSN:1471-2180