Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia

<p>Ferruginous lacustrine systems, such as Lake Towuti, Indonesia, are characterized by a specific type of phosphorus cycling in which hydrous ferric iron (oxyhydr)oxides trap and precipitate phosphorus to the sediment, which reduces its bioavailability in the water column and thereby restrict...

Full description

Bibliographic Details
Main Authors: A. Vuillemin, A. Friese, R. Wirth, J. A. Schuessler, A. M. Schleicher, H. Kemnitz, A. Lücke, K. W. Bauer, S. Nomosatryo, F. von Blanckenburg, R. Simister, L. G. Ordoñez, D. Ariztegui, C. Henny, J. M. Russell, S. Bijaksana, H. Vogel, S. A. Crowe, J. Kallmeyer
Format: Article
Language:English
Published: Copernicus Publications 2020-04-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/17/1955/2020/bg-17-1955-2020.pdf
id doaj-f2f480bc0c3c4af1addd6d063872b0f4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Vuillemin
A. Vuillemin
A. Friese
R. Wirth
J. A. Schuessler
A. M. Schleicher
H. Kemnitz
A. Lücke
K. W. Bauer
K. W. Bauer
S. Nomosatryo
S. Nomosatryo
F. von Blanckenburg
R. Simister
L. G. Ordoñez
D. Ariztegui
C. Henny
J. M. Russell
S. Bijaksana
H. Vogel
S. A. Crowe
S. A. Crowe
S. A. Crowe
J. Kallmeyer
spellingShingle A. Vuillemin
A. Vuillemin
A. Friese
R. Wirth
J. A. Schuessler
A. M. Schleicher
H. Kemnitz
A. Lücke
K. W. Bauer
K. W. Bauer
S. Nomosatryo
S. Nomosatryo
F. von Blanckenburg
R. Simister
L. G. Ordoñez
D. Ariztegui
C. Henny
J. M. Russell
S. Bijaksana
H. Vogel
S. A. Crowe
S. A. Crowe
S. A. Crowe
J. Kallmeyer
Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
Biogeosciences
author_facet A. Vuillemin
A. Vuillemin
A. Friese
R. Wirth
J. A. Schuessler
A. M. Schleicher
H. Kemnitz
A. Lücke
K. W. Bauer
K. W. Bauer
S. Nomosatryo
S. Nomosatryo
F. von Blanckenburg
R. Simister
L. G. Ordoñez
D. Ariztegui
C. Henny
J. M. Russell
S. Bijaksana
H. Vogel
S. A. Crowe
S. A. Crowe
S. A. Crowe
J. Kallmeyer
author_sort A. Vuillemin
title Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
title_short Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
title_full Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
title_fullStr Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
title_full_unstemmed Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
title_sort vivianite formation in ferruginous sediments from lake towuti, indonesia
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2020-04-01
description <p>Ferruginous lacustrine systems, such as Lake Towuti, Indonesia, are characterized by a specific type of phosphorus cycling in which hydrous ferric iron (oxyhydr)oxides trap and precipitate phosphorus to the sediment, which reduces its bioavailability in the water column and thereby restricts primary production. The oceans were also ferruginous during the Archean, thus understanding the dynamics of phosphorus in modern-day ferruginous analogues may shed light on the marine biogeochemical cycling that dominated much of Earth's history. Here we report the presence of large crystals (<span class="inline-formula">&gt;5</span>&thinsp;mm) and nodules (<span class="inline-formula">&gt;5</span>&thinsp;cm) of vivianite – a ferrous iron phosphate – in sediment cores from Lake Towuti and address the processes of vivianite formation, phosphorus retention by iron and the related mineral transformations during early diagenesis in ferruginous sediments.</p> <p>Core scan imaging, together with analyses of bulk sediment and pore water geochemistry, document a 30&thinsp;m long interval consisting of sideritic and non-sideritic clayey beds and diatomaceous oozes containing vivianites. High-resolution imaging of vivianite revealed continuous growth of crystals from tabular to rosette habits that eventually form large (up to 7&thinsp;cm) vivianite nodules in the sediment. Mineral inclusions like millerite and siderite reflect diagenetic mineral formation antecedent to the one of vivianite that is related to microbial reduction of iron and sulfate. Together with the pore water profiles, these data suggest that the precipitation of millerite, siderite and vivianite in soft ferruginous sediments stems from the progressive consumption of dissolved terminal electron acceptors and the typical evolution of pore water geochemistry during diagenesis. Based on solute concentrations and modeled mineral saturation indices,<span id="page1956"/> we inferred vivianite formation to initiate around 20&thinsp;m depth in the sediment. Negative <span class="inline-formula"><i>δ</i><sup>56</sup>Fe</span> values of vivianite indicated incorporation of kinetically fractionated light <span class="inline-formula">Fe<sup>2+</sup></span> into the crystals, likely derived from active reduction and dissolution of ferric oxides and transient ferrous phases during early diagenesis. The size and growth history of the nodules indicate that, after formation, continued growth of vivianite crystals constitutes a sink for P during burial, resulting in long-term P sequestration in ferruginous sediment.</p>
url https://www.biogeosciences.net/17/1955/2020/bg-17-1955-2020.pdf
work_keys_str_mv AT avuillemin vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT avuillemin vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT afriese vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT rwirth vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT jaschuessler vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT amschleicher vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT hkemnitz vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT alucke vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT kwbauer vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT kwbauer vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT snomosatryo vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT snomosatryo vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT fvonblanckenburg vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT rsimister vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT lgordonez vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT dariztegui vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT chenny vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT jmrussell vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT sbijaksana vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT hvogel vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT sacrowe vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT sacrowe vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT sacrowe vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
AT jkallmeyer vivianiteformationinferruginoussedimentsfromlaketowutiindonesia
_version_ 1724931055501180928
spelling doaj-f2f480bc0c3c4af1addd6d063872b0f42020-11-25T02:07:07ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-04-01171955197310.5194/bg-17-1955-2020Vivianite formation in ferruginous sediments from Lake Towuti, IndonesiaA. Vuillemin0A. Vuillemin1A. Friese2R. Wirth3J. A. Schuessler4A. M. Schleicher5H. Kemnitz6A. Lücke7K. W. Bauer8K. W. Bauer9S. Nomosatryo10S. Nomosatryo11F. von Blanckenburg12R. Simister13L. G. Ordoñez14D. Ariztegui15C. Henny16J. M. Russell17S. Bijaksana18H. Vogel19S. A. Crowe20S. A. Crowe21S. A. Crowe22J. Kallmeyer23GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, Germanynow at: Department of Earth and Environmental Science, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, GermanyGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyJülich Research Center, Institute of Bio- and Geosciences 3, Agrosphere, 52428 Jülich, GermanyDepartment of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canadanow at: Department of Earth Sciences, University of Hong Kong, Hong Kong SAR, ChinaGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyResearch Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor, IndonesiaGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, GermanyDepartment of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, CanadaDepartment of Earth Sciences, University of Geneva, Geneva, 1205, SwitzerlandDepartment of Earth Sciences, University of Geneva, Geneva, 1205, SwitzerlandResearch Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor, IndonesiaDepartment of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Providence, RI 02912, USAFaculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 15 Bandung, 50132, IndonesiaInstitute of Geological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, SwitzerlandDepartment of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, CanadaDepartment of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canadanow at: Department of Earth Sciences, University of Hong Kong, Hong Kong SAR, ChinaGFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, 14473 Potsdam, Germany<p>Ferruginous lacustrine systems, such as Lake Towuti, Indonesia, are characterized by a specific type of phosphorus cycling in which hydrous ferric iron (oxyhydr)oxides trap and precipitate phosphorus to the sediment, which reduces its bioavailability in the water column and thereby restricts primary production. The oceans were also ferruginous during the Archean, thus understanding the dynamics of phosphorus in modern-day ferruginous analogues may shed light on the marine biogeochemical cycling that dominated much of Earth's history. Here we report the presence of large crystals (<span class="inline-formula">&gt;5</span>&thinsp;mm) and nodules (<span class="inline-formula">&gt;5</span>&thinsp;cm) of vivianite – a ferrous iron phosphate – in sediment cores from Lake Towuti and address the processes of vivianite formation, phosphorus retention by iron and the related mineral transformations during early diagenesis in ferruginous sediments.</p> <p>Core scan imaging, together with analyses of bulk sediment and pore water geochemistry, document a 30&thinsp;m long interval consisting of sideritic and non-sideritic clayey beds and diatomaceous oozes containing vivianites. High-resolution imaging of vivianite revealed continuous growth of crystals from tabular to rosette habits that eventually form large (up to 7&thinsp;cm) vivianite nodules in the sediment. Mineral inclusions like millerite and siderite reflect diagenetic mineral formation antecedent to the one of vivianite that is related to microbial reduction of iron and sulfate. Together with the pore water profiles, these data suggest that the precipitation of millerite, siderite and vivianite in soft ferruginous sediments stems from the progressive consumption of dissolved terminal electron acceptors and the typical evolution of pore water geochemistry during diagenesis. Based on solute concentrations and modeled mineral saturation indices,<span id="page1956"/> we inferred vivianite formation to initiate around 20&thinsp;m depth in the sediment. Negative <span class="inline-formula"><i>δ</i><sup>56</sup>Fe</span> values of vivianite indicated incorporation of kinetically fractionated light <span class="inline-formula">Fe<sup>2+</sup></span> into the crystals, likely derived from active reduction and dissolution of ferric oxides and transient ferrous phases during early diagenesis. The size and growth history of the nodules indicate that, after formation, continued growth of vivianite crystals constitutes a sink for P during burial, resulting in long-term P sequestration in ferruginous sediment.</p>https://www.biogeosciences.net/17/1955/2020/bg-17-1955-2020.pdf