Ad- and AAV8-mediated ABCA1 gene therapy in a murine model with retinal ischemia/reperfusion injuries

The anti-inflammatory molecule annexin A1 (ANXA1) determines the ultimate fate of retinal ganglion cell (RGC) in glaucoma. Cytoplasmic and extracellular ANXA1 facilitate resolution of inflammation. However, the nuclear translocation of ANXA1 induces RGC apoptosis in a murine glaucoma model, and the...

Full description

Bibliographic Details
Main Authors: Jing Luo, Shengli Wang, Zhenlong Zhou, Yin Zhao
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050121000127
Description
Summary:The anti-inflammatory molecule annexin A1 (ANXA1) determines the ultimate fate of retinal ganglion cell (RGC) in glaucoma. Cytoplasmic and extracellular ANXA1 facilitate resolution of inflammation. However, the nuclear translocation of ANXA1 induces RGC apoptosis in a murine glaucoma model, and the maintenance of ANXA1 secreted in the extracellular environments remains unclear. In this study, we found that intravitreal injection of the recombinant adenovirus vector (Ad)-ATP-binding cassette transporter A1 (ABCA1; carrying full-length ABCA1) improved RGC survival in the ischemia reperfusion (IR) mice model. Upregulation of ABCA1 maintained ANXA1 cytoplasmic location and reduced ANXA1 nuclear translocation, which is due to the decreased binding of ANXA1 with importin β. Moreover, we found that amino acids 903 to 1,344 of ABCA1 interacted with ANXA1 and decreased its nuclear localization. Importantly, intravitreal injection of adenovirus-associated viral (AAV) vector AAV8-ABCA1 (carrying 903 to 1,344 fragments of ABCA1) maintained ANXA1 cytoplasmic location and improved RGC survival in the IR mice model. Thus, overexpression of ABCA1 protects against RGC apoptosis by partially blocking ANXA1 nuclear translocation. This study puts forth a potential gene treatment strategy to prevent RGC apoptosis in glaucoma.
ISSN:2329-0501