Design, Optimization and Evaluation of a New Cylinder Attachment Geometry to Improve the Hopping Height of the Bionic One-Legged Robot

Due to the high power-to-weight ratio and robustness, hydraulic cylinders are widely used in the actuation area of the legged robot systems. Most of these applications are focused on the motion stability, gait planning, and impedance control. However, the energy efficiency of the legged robotic syst...

Full description

Bibliographic Details
Main Authors: Donglai Zhao, Wenjie Ge, Xiaojuan Mo, Yuzhu Li, Zhuo Wang
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/8/3676
Description
Summary:Due to the high power-to-weight ratio and robustness, hydraulic cylinders are widely used in the actuation area of the legged robot systems. Most of these applications are focused on the motion stability, gait planning, and impedance control. However, the energy efficiency of the legged robotic system is also a very important point to be considered. Hopping locomotion requires a fast extension of the tibia leg at the end of the take-off phase, which causes a continuous increment of the cylinder velocity under the normally direct attachment geometry (DAG) of the cylinder. This leads to a high flow requirement, large pressure drop, and low energy efficiency. Therefore, we propose a four-bar mechanism attachment geometry (FMAG) to improve the energy efficiency by refining the relationship between the joint angle and cylinder displacement trend. The kinematic and dynamic models of the bionic one-legged robot are built to calculate the hopping process during the take-off phase. Based on the established dynamic models, the design parameters in both the DAG and FMAG are optimized to maximize the hopping height, respectively. The hopping experiments are conducted to verify the effectiveness of the new attachment geometry. The experimental results show that the robot hopping energy at the end of the take-off phase increases 14.8% under the FMAG.
ISSN:2076-3417