Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film

In the present study, a new biosensor based on lipase from Candida rugosa (CRL) was developed for amlodipine besylate drug (AMD) with biodegradable material using a mixture of polyaniline iron oxide and gelatin. Polyaniline/Fe2O3 (PANI@Fe2O3) was prepared by a chemical polymerization method in a med...

Full description

Bibliographic Details
Main Authors: Elbahi Djaalab, Mohamed El Hadi Samar, Saida Zougar, Rochdi Kherrat
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Catalysts
Subjects:
Online Access:http://www.mdpi.com/2073-4344/8/6/233
Description
Summary:In the present study, a new biosensor based on lipase from Candida rugosa (CRL) was developed for amlodipine besylate drug (AMD) with biodegradable material using a mixture of polyaniline iron oxide and gelatin. Polyaniline/Fe2O3 (PANI@Fe2O3) was prepared by a chemical polymerization method in a medium of ammonium persulfate as an oxidant and characterized by employing Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and Ultra-violet (UV) spectroscopy. The purified enzyme was entrapped in the biocomposite matrix film with the aid of a glutaraldehyde cross-linking reagent to establish the immobilization of the lipase. The principle of the biosensor is based on the electrochemical properties of amlodipine besylate (AMD), which were studied for the first time using the cyclic voltammetric method. The cathodic behavior of AMD was measured on the irreversible reduction signal at −0.185 V versus Ag/AgCl at pH 7.4 and 30 °C in a phosphate alkaline buffer.
ISSN:2073-4344