Auditory and Visual Response Inhibition in Children with Bilateral Hearing Aids and Children with ADHD

Children fitted with hearing aids (HAs) and children with attention deficit/hyperactivity disorder (ADHD) often have marked difficulties concentrating in noisy environments. However, little is known about the underlying neural mechanism of auditory and visual attention deficits in a direct compariso...

Full description

Bibliographic Details
Main Authors: Laura Bell, Wolfgang Scharke, Vanessa Reindl, Janina Fels, Christiane Neuschaefer-Rube, Kerstin Konrad
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/10/5/307
Description
Summary:Children fitted with hearing aids (HAs) and children with attention deficit/hyperactivity disorder (ADHD) often have marked difficulties concentrating in noisy environments. However, little is known about the underlying neural mechanism of auditory and visual attention deficits in a direct comparison of both groups. The current functional near-infrared spectroscopy (fNIRS) study was the first to investigate the behavioral performance and neural activation during an auditory and a visual go/nogo paradigm in children fitted with bilateral HAs, children with ADHD and typically developing children (TDC). All children reacted faster, but less accurately, to visual than auditory stimuli, indicating a sensory-specific response inhibition efficiency. Independent of modality, children with ADHD and children with HAs reacted faster and tended to show more false alarms than TDC. On a neural level, however, children with ADHD showed supra-modal neural alterations, particularly in frontal regions. On the contrary, children with HAs exhibited modality-dependent alterations in the right temporopolar cortex. Higher activation was observed in the auditory than in the visual condition. Thus, while children with ADHD and children with HAs showed similar behavioral alterations, different neural mechanisms might underlie these behavioral changes. Future studies are warranted to confirm the current findings with larger samples. To this end, fNIRS provided a promising tool to differentiate the neural mechanisms underlying response inhibition deficits between groups and modalities.
ISSN:2076-3425