Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/5/467 |
id |
doaj-f4180864928d48729343f26bbe72cd2e |
---|---|
record_format |
Article |
spelling |
doaj-f4180864928d48729343f26bbe72cd2e2021-02-26T00:01:19ZengMDPI AGMathematics2227-73902021-02-01946746710.3390/math9050467Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAWPamela Chiñas-Sanchez0Ismael Lopez-Juarez1Jose Antonio Vazquez-Lopez2Jose Luis Navarro-Gonzalez3Aidee Hernandez-Lopez4Tecnologico Nacional de Mexico/Instituto Tecnologico de Saltillo, Saltillo 25280, MexicoCentre for Research and Advanced Studies (CINVESTAV), Ramos Arizpe 25900, MexicoTecnologico Nacional de Mexico/Instituto Tecnologico de Celaya, Celaya 38010, MexicoIJ Robotics SA de CV, Saltillo 25000, MexicoSistema Avanzado de Bachillerato y Educacion Superior, Celaya 38010, MexicoIndustrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying a distinctive out-of-control multivariate pattern using the Support Vector Machines (SVM) and the Mahalanobis Distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mn>2</mn></msup></semantics></math></inline-formula> it is possible to infer the variables that disturbed the process; hence, possible faults can be predicted knowing the state of the process. The method is based on our previous work, and in this paper we present the method application for an automated process, namely, the robotic Gas Metal Arc Welding (GMAW). Results from the application indicate an overall accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, which demonstrates the effectiveness of the method, which can also be used in other MVPR tasks.https://www.mdpi.com/2227-7390/9/5/467multivariate patternssupport vector machines (SVM)mahalanobis distancerobotic welding processGMAW |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pamela Chiñas-Sanchez Ismael Lopez-Juarez Jose Antonio Vazquez-Lopez Jose Luis Navarro-Gonzalez Aidee Hernandez-Lopez |
spellingShingle |
Pamela Chiñas-Sanchez Ismael Lopez-Juarez Jose Antonio Vazquez-Lopez Jose Luis Navarro-Gonzalez Aidee Hernandez-Lopez Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW Mathematics multivariate patterns support vector machines (SVM) mahalanobis distance robotic welding process GMAW |
author_facet |
Pamela Chiñas-Sanchez Ismael Lopez-Juarez Jose Antonio Vazquez-Lopez Jose Luis Navarro-Gonzalez Aidee Hernandez-Lopez |
author_sort |
Pamela Chiñas-Sanchez |
title |
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW |
title_short |
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW |
title_full |
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW |
title_fullStr |
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW |
title_full_unstemmed |
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW |
title_sort |
out-of-control multivariate patterns recognition using <i>d</i><sup>2</sup> and svm: a study case for gmaw |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-02-01 |
description |
Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying a distinctive out-of-control multivariate pattern using the Support Vector Machines (SVM) and the Mahalanobis Distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mn>2</mn></msup></semantics></math></inline-formula> it is possible to infer the variables that disturbed the process; hence, possible faults can be predicted knowing the state of the process. The method is based on our previous work, and in this paper we present the method application for an automated process, namely, the robotic Gas Metal Arc Welding (GMAW). Results from the application indicate an overall accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, which demonstrates the effectiveness of the method, which can also be used in other MVPR tasks. |
topic |
multivariate patterns support vector machines (SVM) mahalanobis distance robotic welding process GMAW |
url |
https://www.mdpi.com/2227-7390/9/5/467 |
work_keys_str_mv |
AT pamelachinassanchez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw AT ismaellopezjuarez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw AT joseantoniovazquezlopez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw AT joseluisnavarrogonzalez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw AT aideehernandezlopez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw |
_version_ |
1724250558748950528 |