Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW

Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying...

Full description

Bibliographic Details
Main Authors: Pamela Chiñas-Sanchez, Ismael Lopez-Juarez, Jose Antonio Vazquez-Lopez, Jose Luis Navarro-Gonzalez, Aidee Hernandez-Lopez
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/5/467
id doaj-f4180864928d48729343f26bbe72cd2e
record_format Article
spelling doaj-f4180864928d48729343f26bbe72cd2e2021-02-26T00:01:19ZengMDPI AGMathematics2227-73902021-02-01946746710.3390/math9050467Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAWPamela Chiñas-Sanchez0Ismael Lopez-Juarez1Jose Antonio Vazquez-Lopez2Jose Luis Navarro-Gonzalez3Aidee Hernandez-Lopez4Tecnologico Nacional de Mexico/Instituto Tecnologico de Saltillo, Saltillo 25280, MexicoCentre for Research and Advanced Studies (CINVESTAV), Ramos Arizpe 25900, MexicoTecnologico Nacional de Mexico/Instituto Tecnologico de Celaya, Celaya 38010, MexicoIJ Robotics SA de CV, Saltillo 25000, MexicoSistema Avanzado de Bachillerato y Educacion Superior, Celaya 38010, MexicoIndustrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying a distinctive out-of-control multivariate pattern using the Support Vector Machines (SVM) and the Mahalanobis Distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mn>2</mn></msup></semantics></math></inline-formula> it is possible to infer the variables that disturbed the process; hence, possible faults can be predicted knowing the state of the process. The method is based on our previous work, and in this paper we present the method application for an automated process, namely, the robotic Gas Metal Arc Welding (GMAW). Results from the application indicate an overall accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, which demonstrates the effectiveness of the method, which can also be used in other MVPR tasks.https://www.mdpi.com/2227-7390/9/5/467multivariate patternssupport vector machines (SVM)mahalanobis distancerobotic welding processGMAW
collection DOAJ
language English
format Article
sources DOAJ
author Pamela Chiñas-Sanchez
Ismael Lopez-Juarez
Jose Antonio Vazquez-Lopez
Jose Luis Navarro-Gonzalez
Aidee Hernandez-Lopez
spellingShingle Pamela Chiñas-Sanchez
Ismael Lopez-Juarez
Jose Antonio Vazquez-Lopez
Jose Luis Navarro-Gonzalez
Aidee Hernandez-Lopez
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
Mathematics
multivariate patterns
support vector machines (SVM)
mahalanobis distance
robotic welding process
GMAW
author_facet Pamela Chiñas-Sanchez
Ismael Lopez-Juarez
Jose Antonio Vazquez-Lopez
Jose Luis Navarro-Gonzalez
Aidee Hernandez-Lopez
author_sort Pamela Chiñas-Sanchez
title Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
title_short Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
title_full Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
title_fullStr Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
title_full_unstemmed Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
title_sort out-of-control multivariate patterns recognition using <i>d</i><sup>2</sup> and svm: a study case for gmaw
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-02-01
description Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying a distinctive out-of-control multivariate pattern using the Support Vector Machines (SVM) and the Mahalanobis Distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>D</mi><mn>2</mn></msup></semantics></math></inline-formula> it is possible to infer the variables that disturbed the process; hence, possible faults can be predicted knowing the state of the process. The method is based on our previous work, and in this paper we present the method application for an automated process, namely, the robotic Gas Metal Arc Welding (GMAW). Results from the application indicate an overall accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, which demonstrates the effectiveness of the method, which can also be used in other MVPR tasks.
topic multivariate patterns
support vector machines (SVM)
mahalanobis distance
robotic welding process
GMAW
url https://www.mdpi.com/2227-7390/9/5/467
work_keys_str_mv AT pamelachinassanchez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw
AT ismaellopezjuarez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw
AT joseantoniovazquezlopez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw
AT joseluisnavarrogonzalez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw
AT aideehernandezlopez outofcontrolmultivariatepatternsrecognitionusingidisup2supandsvmastudycaseforgmaw
_version_ 1724250558748950528