Crystal Indentation Hardness

There is expanded interest in the long-standing subject of the hardness properties of materials. A major part of such interest is due to the advent of nanoindentation hardness testing systems which have made available orders of magnitude increases in load and displacement measuring capabilities achi...

Full description

Bibliographic Details
Main Authors: Ronald W. Armstrong, Stephen M. Walley, Wayne L. Elban
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/7/1/21
Description
Summary:There is expanded interest in the long-standing subject of the hardness properties of materials. A major part of such interest is due to the advent of nanoindentation hardness testing systems which have made available orders of magnitude increases in load and displacement measuring capabilities achieved in a continuously recorded test procedure. The new results have been smoothly merged with other advances in conventional hardness testing and with parallel developments in improved model descriptions of both elastic contact mechanics and dislocation mechanisms operative in the understanding of crystal plasticity and fracturing behaviors. No crystal is either too soft or too hard to prevent the determination of its elastic, plastic and cracking properties under a suitable probing indenter. A sampling of the wealth of measurements and reported analyses associated with the topic on a wide variety of materials are presented in the current Special Issue.
ISSN:2073-4352