Genome-Wide Microarray Analysis of Long Non-Coding RNAs in Eutopic Secretory Endometrium with Endometriosis

Background/Aims: Dysregulated long non-coding RNAs (lncRNAs) can lead to the occurrence of various diseases; however, reports of the function of lncRNAs in endometriosis and related studies are scarce. The pathogenesis of endometriosis is still poorly understood. Methods: Dysregulated lncRNAs and mR...

Full description

Bibliographic Details
Main Authors: Yang Wang, Yan Li, Zhuo Yang, Kuiran Liu, Danbo Wang
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2015-11-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:http://www.karger.com/Article/FullText/438579
Description
Summary:Background/Aims: Dysregulated long non-coding RNAs (lncRNAs) can lead to the occurrence of various diseases; however, reports of the function of lncRNAs in endometriosis and related studies are scarce. The pathogenesis of endometriosis is still poorly understood. Methods: Dysregulated lncRNAs and mRNAs between eutopic and normal endometrium (both are late secretory) were analyzed by lncRNA microarray. Eight lncRNAs and mRNA CDK6 were validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatics prediction was used to investigate the potential function of these differentially expressed lncRNAs. Results: Microarray expression profiling suggests 1277 lncRNAs (488 up- and 789 down-regulated) and 1216 mRNAs (578 up- and 638 down-regulated) were expressed differentially between eutopic and normal endometrium. Pathway analysis and gene ontology (GO) analysis found differently expressed lncRNAs associated with the cell cycle and immune regulation. The relative level of expression of CDK6 and AC002454.1 were obtained by qRT-PCR and the Pearson correlation coefficient was 0.747 (pConclusion: These dysregulated lncRNAs might provide information for new biomarkers or novel therapeutic targets of endometriosis. AC002454.1 might induce cell cycle disorder by regulating CDK6 to participate in the pathogenesis of endometriosis.
ISSN:1015-8987
1421-9778