Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state in the Arctic Ocean have been caused by the melting of sea ice as...

Full description

Bibliographic Details
Main Authors: A. Yamamoto, M. Kawamiya, A. Ishida, Y. Yamanaka, S. Watanabe
Format: Article
Language:English
Published: Copernicus Publications 2012-06-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/9/2365/2012/bg-9-2365-2012.pdf
id doaj-f4b5e6299fd440cca4fa5a3775ae100b
record_format Article
spelling doaj-f4b5e6299fd440cca4fa5a3775ae100b2020-11-25T01:23:04ZengCopernicus PublicationsBiogeosciences1726-41701726-41892012-06-01962365237510.5194/bg-9-2365-2012Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidificationA. YamamotoM. KawamiyaA. IshidaY. YamanakaS. WatanabeThe largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state in the Arctic Ocean have been caused by the melting of sea ice as well as by an increase in the concentration of atmospheric carbon dioxide. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. The observed recent Arctic sea-ice loss has been more rapid than projected by many of the climate models that contributed to the Intergovernmental Panel on Climate Change Fourth Assessment Report. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an Earth system model with different sea-ice reduction rates under similar CO<sub>2</sub> emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO<sub>2</sub> concentration reaches 513 (606) ppm in year 2046 (2056) in new (old) version. At an atmospheric CO<sub>2</sub> concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.1 and 0.21 respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO<sub>2</sub> uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. Our results suggest that the future reductions in pH and aragonite saturation state could be significantly faster than previously projected if the sea-ice reduction in the Arctic Ocean keeps its present pace.http://www.biogeosciences.net/9/2365/2012/bg-9-2365-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Yamamoto
M. Kawamiya
A. Ishida
Y. Yamanaka
S. Watanabe
spellingShingle A. Yamamoto
M. Kawamiya
A. Ishida
Y. Yamanaka
S. Watanabe
Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
Biogeosciences
author_facet A. Yamamoto
M. Kawamiya
A. Ishida
Y. Yamanaka
S. Watanabe
author_sort A. Yamamoto
title Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
title_short Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
title_full Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
title_fullStr Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
title_full_unstemmed Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification
title_sort impact of rapid sea-ice reduction in the arctic ocean on the rate of ocean acidification
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2012-06-01
description The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state in the Arctic Ocean have been caused by the melting of sea ice as well as by an increase in the concentration of atmospheric carbon dioxide. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. The observed recent Arctic sea-ice loss has been more rapid than projected by many of the climate models that contributed to the Intergovernmental Panel on Climate Change Fourth Assessment Report. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an Earth system model with different sea-ice reduction rates under similar CO<sub>2</sub> emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO<sub>2</sub> concentration reaches 513 (606) ppm in year 2046 (2056) in new (old) version. At an atmospheric CO<sub>2</sub> concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.1 and 0.21 respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO<sub>2</sub> uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. Our results suggest that the future reductions in pH and aragonite saturation state could be significantly faster than previously projected if the sea-ice reduction in the Arctic Ocean keeps its present pace.
url http://www.biogeosciences.net/9/2365/2012/bg-9-2365-2012.pdf
work_keys_str_mv AT ayamamoto impactofrapidseaicereductioninthearcticoceanontherateofoceanacidification
AT mkawamiya impactofrapidseaicereductioninthearcticoceanontherateofoceanacidification
AT aishida impactofrapidseaicereductioninthearcticoceanontherateofoceanacidification
AT yyamanaka impactofrapidseaicereductioninthearcticoceanontherateofoceanacidification
AT swatanabe impactofrapidseaicereductioninthearcticoceanontherateofoceanacidification
_version_ 1725123815910932480