The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities

Since microgrids require public support to make economic sense, governments regularly subsidize renewable microgrids to increase their renewable energy market penetration. In this study, we investigated the optimal subsidy level for governments to correct the market failure of microgrids and analyze...

Full description

Bibliographic Details
Main Authors: Deng Xu, Yong Long
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/11/11/3168
Description
Summary:Since microgrids require public support to make economic sense, governments regularly subsidize renewable microgrids to increase their renewable energy market penetration. In this study, we investigated the optimal subsidy level for governments to correct the market failure of microgrids and analyzed the impacts of regulation on the interaction between a microgrid and a distribution network operator (DNO). Specifically, we proposed economic rationales for government subsidies for microgrids regarding public interest benefits in relation to double externalities (learning spillover effect and environmental externality). We incorporated the double externalities into a three-echelon game model in an electricity supply chain with one regulator, one microgrid, and one DNO, in which the regulator decides the subsidy level to achieve maximal social welfare. We found that the double externalities and double marginalization caused underinvestment in microgrid capacity in the scenario without government intervention. The government could choose the appropriate subsidy level to achieve the system optimum, which led to a triple win for the microgrid, the DNO, and the social planner. Our analytical results also showed that the microgrid gained more benefits from regulation than the DNO. The microgrid may offer a negative wholesale price to the DNO in exchange for more opportunities to import electricity into the grid, especially when the investment cost is sufficiently low. Our study suggests that supporting microgrids requires a subsidy phase-out mechanism and alternative market-oriented policies with the development of the microgrid industry.
ISSN:2071-1050