Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces

In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-f...

Full description

Bibliographic Details
Main Authors: Isidoro Iván Cuesta, Pavel Michel Almaguer-Zaldivar, Jesús Manuel Alegre
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/11/1838
Description
Summary:In the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas. Furthermore, if a last coat of paint that is usually subjected to a thermal cycle, characterized by temperature (<inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>) and exposure time (<inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>), is applied, it can also influence mechanical behaviour. Consequently, this paper studies how both processes affect the mechanical behaviour of an aluminium alloy of the 5000 series, commonly used in these types of components. In particular, the mechanical properties such as the yield stress at 0.2% (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>), the ultimate tensile strength (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>) and the engineering strain at break (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula>) have been analysed. To achieve this, a response surface technique, based on the design of experiments, has been used. The response surfaces obtained allow for the prediction of mechanical properties <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#963;</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>f</mi> </msub> </mrow> </semantics> </math> </inline-formula> for any combination of values of <inline-formula> <math display="inline"> <semantics> <mi>t</mi> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#949;</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> </inline-formula>.
ISSN:1996-1944