Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity

Abstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambd...

Full description

Bibliographic Details
Main Authors: Quanqing Li, Kaimin Teng, Wenbo Wang, Jian Zhang
Format: Article
Language:English
Published: SpringerOpen 2020-06-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-020-01409-1
id doaj-f6a37169f1e74c149f66e55c794dd833
record_format Article
spelling doaj-f6a37169f1e74c149f66e55c794dd8332020-11-25T02:24:41ZengSpringerOpenBoundary Value Problems1687-27702020-06-012020111010.1186/s13661-020-01409-1Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearityQuanqing Li0Kaimin Teng1Wenbo Wang2Jian Zhang3Department of Mathematics, Honghe UniversityDepartment of Mathematics, Taiyuan University of TechnologyDepartment of Mathematics and Statistics, Yunnan UniversitySchool of Mathematics and Statistics, Hunan University of Technology and BusinessAbstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambda \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, $$ where ( − Δ ) A s $(-\Delta )_{A}^{s}$ is the fractional magnetic operator with 0 < s < 1 $0< s<1$ , N > 2 s $N>2s$ , λ > 0 $\lambda >0$ , 2 s ∗ = 2 N N − 2 s $2_{s}^{*}=\frac{2N}{N-2s}$ , p ≥ 2 s ∗ $p\geq 2_{s}^{*}$ , f is a subcritical nonlinearity, and V ∈ C ( R N , R ) $V \in C(\mathbb{R}^{N},\mathbb{R})$ and A ∈ C ( R N , R N ) $A \in C(\mathbb{R}^{N}, \mathbb{R}^{N})$ are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small λ > 0 $\lambda >0$ . Our main contribution is related to the fact that we are able to deal with the case p > 2 s ∗ $p>2_{s}^{*}$ .http://link.springer.com/article/10.1186/s13661-020-01409-1Fractional Schrödinger equationFractional magnetic operatorCritical or supercritical nonlinearity
collection DOAJ
language English
format Article
sources DOAJ
author Quanqing Li
Kaimin Teng
Wenbo Wang
Jian Zhang
spellingShingle Quanqing Li
Kaimin Teng
Wenbo Wang
Jian Zhang
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
Boundary Value Problems
Fractional Schrödinger equation
Fractional magnetic operator
Critical or supercritical nonlinearity
author_facet Quanqing Li
Kaimin Teng
Wenbo Wang
Jian Zhang
author_sort Quanqing Li
title Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
title_short Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
title_full Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
title_fullStr Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
title_full_unstemmed Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
title_sort existence of nontrivial solutions for fractional schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2020-06-01
description Abstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambda \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, $$ where ( − Δ ) A s $(-\Delta )_{A}^{s}$ is the fractional magnetic operator with 0 < s < 1 $0< s<1$ , N > 2 s $N>2s$ , λ > 0 $\lambda >0$ , 2 s ∗ = 2 N N − 2 s $2_{s}^{*}=\frac{2N}{N-2s}$ , p ≥ 2 s ∗ $p\geq 2_{s}^{*}$ , f is a subcritical nonlinearity, and V ∈ C ( R N , R ) $V \in C(\mathbb{R}^{N},\mathbb{R})$ and A ∈ C ( R N , R N ) $A \in C(\mathbb{R}^{N}, \mathbb{R}^{N})$ are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small λ > 0 $\lambda >0$ . Our main contribution is related to the fact that we are able to deal with the case p > 2 s ∗ $p>2_{s}^{*}$ .
topic Fractional Schrödinger equation
Fractional magnetic operator
Critical or supercritical nonlinearity
url http://link.springer.com/article/10.1186/s13661-020-01409-1
work_keys_str_mv AT quanqingli existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity
AT kaiminteng existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity
AT wenbowang existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity
AT jianzhang existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity
_version_ 1724854010178961408