Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
Abstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambd...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-06-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-020-01409-1 |
id |
doaj-f6a37169f1e74c149f66e55c794dd833 |
---|---|
record_format |
Article |
spelling |
doaj-f6a37169f1e74c149f66e55c794dd8332020-11-25T02:24:41ZengSpringerOpenBoundary Value Problems1687-27702020-06-012020111010.1186/s13661-020-01409-1Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearityQuanqing Li0Kaimin Teng1Wenbo Wang2Jian Zhang3Department of Mathematics, Honghe UniversityDepartment of Mathematics, Taiyuan University of TechnologyDepartment of Mathematics and Statistics, Yunnan UniversitySchool of Mathematics and Statistics, Hunan University of Technology and BusinessAbstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambda \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, $$ where ( − Δ ) A s $(-\Delta )_{A}^{s}$ is the fractional magnetic operator with 0 < s < 1 $0< s<1$ , N > 2 s $N>2s$ , λ > 0 $\lambda >0$ , 2 s ∗ = 2 N N − 2 s $2_{s}^{*}=\frac{2N}{N-2s}$ , p ≥ 2 s ∗ $p\geq 2_{s}^{*}$ , f is a subcritical nonlinearity, and V ∈ C ( R N , R ) $V \in C(\mathbb{R}^{N},\mathbb{R})$ and A ∈ C ( R N , R N ) $A \in C(\mathbb{R}^{N}, \mathbb{R}^{N})$ are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small λ > 0 $\lambda >0$ . Our main contribution is related to the fact that we are able to deal with the case p > 2 s ∗ $p>2_{s}^{*}$ .http://link.springer.com/article/10.1186/s13661-020-01409-1Fractional Schrödinger equationFractional magnetic operatorCritical or supercritical nonlinearity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Quanqing Li Kaimin Teng Wenbo Wang Jian Zhang |
spellingShingle |
Quanqing Li Kaimin Teng Wenbo Wang Jian Zhang Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity Boundary Value Problems Fractional Schrödinger equation Fractional magnetic operator Critical or supercritical nonlinearity |
author_facet |
Quanqing Li Kaimin Teng Wenbo Wang Jian Zhang |
author_sort |
Quanqing Li |
title |
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
title_short |
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
title_full |
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
title_fullStr |
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
title_full_unstemmed |
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
title_sort |
existence of nontrivial solutions for fractional schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2020-06-01 |
description |
Abstract In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , $$ (-\Delta )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert ^{2}\bigr)u+\lambda \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, $$ where ( − Δ ) A s $(-\Delta )_{A}^{s}$ is the fractional magnetic operator with 0 < s < 1 $0< s<1$ , N > 2 s $N>2s$ , λ > 0 $\lambda >0$ , 2 s ∗ = 2 N N − 2 s $2_{s}^{*}=\frac{2N}{N-2s}$ , p ≥ 2 s ∗ $p\geq 2_{s}^{*}$ , f is a subcritical nonlinearity, and V ∈ C ( R N , R ) $V \in C(\mathbb{R}^{N},\mathbb{R})$ and A ∈ C ( R N , R N ) $A \in C(\mathbb{R}^{N}, \mathbb{R}^{N})$ are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small λ > 0 $\lambda >0$ . Our main contribution is related to the fact that we are able to deal with the case p > 2 s ∗ $p>2_{s}^{*}$ . |
topic |
Fractional Schrödinger equation Fractional magnetic operator Critical or supercritical nonlinearity |
url |
http://link.springer.com/article/10.1186/s13661-020-01409-1 |
work_keys_str_mv |
AT quanqingli existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity AT kaiminteng existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity AT wenbowang existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity AT jianzhang existenceofnontrivialsolutionsforfractionalschrodingerequationswithelectromagneticfieldsandcriticalorsupercriticalnonlinearity |
_version_ |
1724854010178961408 |