Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential

We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to c...

Full description

Bibliographic Details
Main Authors: María Gabriela Villamizar-Sarmiento, Ignacio Moreno-Villoslada, Samuel Martínez, Annesi Giacaman, Victor Miranda, Alejandra Vidal, Sandra L. Orellana, Miguel Concha, Francisca Pavicic, Judit G. Lisoni, Lisette Leyton, Felipe A. Oyarzun-Ampuero
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/9/7/944
id doaj-f6ac531a1d4d4e15b236df92b3bd04a4
record_format Article
spelling doaj-f6ac531a1d4d4e15b236df92b3bd04a42020-11-25T01:49:48ZengMDPI AGNanomaterials2079-49912019-06-019794410.3390/nano9070944nano9070944Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical PotentialMaría Gabriela Villamizar-Sarmiento0Ignacio Moreno-Villoslada1Samuel Martínez2Annesi Giacaman3Victor Miranda4Alejandra Vidal5Sandra L. Orellana6Miguel Concha7Francisca Pavicic8Judit G. Lisoni9Lisette Leyton10Felipe A. Oyarzun-Ampuero11Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileInstituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, ChileAdvanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileInstituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, ChileDepartamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileInstituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, ChileInstituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, ChileInstituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, ChileInstituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, ChileNM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, ChileAdvanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileAdvanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileWe report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to −43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93−464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.https://www.mdpi.com/2079-4991/9/7/944self-assemblyspongesionic nanocomplexespolyargininehyaluronic acidcell proliferation
collection DOAJ
language English
format Article
sources DOAJ
author María Gabriela Villamizar-Sarmiento
Ignacio Moreno-Villoslada
Samuel Martínez
Annesi Giacaman
Victor Miranda
Alejandra Vidal
Sandra L. Orellana
Miguel Concha
Francisca Pavicic
Judit G. Lisoni
Lisette Leyton
Felipe A. Oyarzun-Ampuero
spellingShingle María Gabriela Villamizar-Sarmiento
Ignacio Moreno-Villoslada
Samuel Martínez
Annesi Giacaman
Victor Miranda
Alejandra Vidal
Sandra L. Orellana
Miguel Concha
Francisca Pavicic
Judit G. Lisoni
Lisette Leyton
Felipe A. Oyarzun-Ampuero
Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
Nanomaterials
self-assembly
sponges
ionic nanocomplexes
polyarginine
hyaluronic acid
cell proliferation
author_facet María Gabriela Villamizar-Sarmiento
Ignacio Moreno-Villoslada
Samuel Martínez
Annesi Giacaman
Victor Miranda
Alejandra Vidal
Sandra L. Orellana
Miguel Concha
Francisca Pavicic
Judit G. Lisoni
Lisette Leyton
Felipe A. Oyarzun-Ampuero
author_sort María Gabriela Villamizar-Sarmiento
title Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
title_short Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
title_full Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
title_fullStr Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
title_full_unstemmed Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential
title_sort ionic nanocomplexes of hyaluronic acid and polyarginine to form solid materials: a green methodology to obtain sponges with biomedical potential
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2019-06-01
description We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to −43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93−464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.
topic self-assembly
sponges
ionic nanocomplexes
polyarginine
hyaluronic acid
cell proliferation
url https://www.mdpi.com/2079-4991/9/7/944
work_keys_str_mv AT mariagabrielavillamizarsarmiento ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT ignaciomorenovilloslada ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT samuelmartinez ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT annesigiacaman ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT victormiranda ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT alejandravidal ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT sandralorellana ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT miguelconcha ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT franciscapavicic ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT juditglisoni ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT lisetteleyton ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
AT felipeaoyarzunampuero ionicnanocomplexesofhyaluronicacidandpolyargininetoformsolidmaterialsagreenmethodologytoobtainspongeswithbiomedicalpotential
_version_ 1725004922668187648