Hamilton-Jacobi approach to holographic renormalization of massive gravity

Abstract Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it seems. Then we apply it to the holographic...

Full description

Bibliographic Details
Main Authors: Fan Chen, Shao-Feng Wu, Yuxuan Peng
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2019)072
Description
Summary:Abstract Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it seems. Then we apply it to the holographic renormalization of massive gravity. We assume that the shift vector is falling off fast enough asymptotically. We derive the counterterms up to the boundary dimension d = 4. Interestingly, we find that the conformal anomaly can even occur in odd dimensions, which is different from the Einstein gravity. We check that the counterterms cancel the divergent part of the on-shell action at the background level. At the perturbation level, they are also applicable in several time-dependent cases.
ISSN:1029-8479