Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
In this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{\partial \nu}=0 &\hbox{ on } \partial\Omeg...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2018-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6115 |
id |
doaj-f6eb419f9d744ab5a726804ba18b77d2 |
---|---|
record_format |
Article |
spelling |
doaj-f6eb419f9d744ab5a726804ba18b77d22021-07-14T07:21:30ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752018-01-0120179911510.14232/ejqtde.2017.1.996115Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal sourceJuntang Ding0Xuhui Shen1School of Mathematical Sciences, Shanxi University, Taiyuan, P.R. ChinaSchool of Mathematical Sciences, Shanxi University, Taiyuan, P.R. ChinaIn this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{\partial \nu}=0 &\hbox{ on } \partial\Omega\times(0,t^{*}), \\ u(x,0)=u_{0}(x)\geq0 & \hbox{ in } \overline{\Omega}. \end{cases} $$ Here $\Omega$ is a bounded domain in $\mathbb{R}^{n}\ (n\geq2)$ with smooth boundary $\partial\Omega$. Weighted nonlocal source satisfies $$ c(x)f(u(x,t))\leq a_1+a_2\left(u(x,t)\right)^{p}\left(\int_{\Omega}\left(u(x,t)\right)^{\alpha}{\rm d}x\right)^{m}, $$ where $a_2,p,\alpha$ are some positive constants and $a_1, m$ are some nonnegative constants. We make use of a differential inequality technique and Sobolev inequality to obtain a lower bound for the blow-up time of the solution. In addition, an upper bound for the blow-up time is also derived.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6115blow-up problemsquasilinear reaction equationweighted nonlocal source |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juntang Ding Xuhui Shen |
spellingShingle |
Juntang Ding Xuhui Shen Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source Electronic Journal of Qualitative Theory of Differential Equations blow-up problems quasilinear reaction equation weighted nonlocal source |
author_facet |
Juntang Ding Xuhui Shen |
author_sort |
Juntang Ding |
title |
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
title_short |
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
title_full |
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
title_fullStr |
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
title_full_unstemmed |
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
title_sort |
blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2018-01-01 |
description |
In this paper, we investigate the following quasilinear reaction diffusion equations
$$
\begin{cases}
\left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in }
\Omega\times(0,t^{*}),\\
\frac{\partial u}{\partial \nu}=0
&\hbox{ on } \partial\Omega\times(0,t^{*}), \\
u(x,0)=u_{0}(x)\geq0 & \hbox{ in } \overline{\Omega}.
\end{cases}
$$
Here $\Omega$ is a bounded domain in $\mathbb{R}^{n}\ (n\geq2)$ with smooth boundary $\partial\Omega$. Weighted nonlocal source satisfies
$$
c(x)f(u(x,t))\leq a_1+a_2\left(u(x,t)\right)^{p}\left(\int_{\Omega}\left(u(x,t)\right)^{\alpha}{\rm d}x\right)^{m},
$$
where $a_2,p,\alpha$ are some positive constants and $a_1, m$ are some nonnegative constants. We make use of a differential inequality technique and Sobolev inequality to obtain a lower bound for the blow-up time of the solution. In addition, an upper bound for the blow-up time is also derived. |
topic |
blow-up problems quasilinear reaction equation weighted nonlocal source |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6115 |
work_keys_str_mv |
AT juntangding blowupproblemsforquasilinearreactiondiffusionequationswithweightednonlocalsource AT xuhuishen blowupproblemsforquasilinearreactiondiffusionequationswithweightednonlocalsource |
_version_ |
1721303539949502464 |