Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source

In this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{\partial \nu}=0 &\hbox{ on } \partial\Omeg...

Full description

Bibliographic Details
Main Authors: Juntang Ding, Xuhui Shen
Format: Article
Language:English
Published: University of Szeged 2018-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6115
id doaj-f6eb419f9d744ab5a726804ba18b77d2
record_format Article
spelling doaj-f6eb419f9d744ab5a726804ba18b77d22021-07-14T07:21:30ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752018-01-0120179911510.14232/ejqtde.2017.1.996115Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal sourceJuntang Ding0Xuhui Shen1School of Mathematical Sciences, Shanxi University, Taiyuan, P.R. ChinaSchool of Mathematical Sciences, Shanxi University, Taiyuan, P.R. ChinaIn this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{\partial \nu}=0 &\hbox{ on } \partial\Omega\times(0,t^{*}), \\ u(x,0)=u_{0}(x)\geq0 & \hbox{ in } \overline{\Omega}. \end{cases} $$ Here $\Omega$ is a bounded domain in $\mathbb{R}^{n}\ (n\geq2)$ with smooth boundary $\partial\Omega$. Weighted nonlocal source satisfies $$ c(x)f(u(x,t))\leq a_1+a_2\left(u(x,t)\right)^{p}\left(\int_{\Omega}\left(u(x,t)\right)^{\alpha}{\rm d}x\right)^{m}, $$ where $a_2,p,\alpha$ are some positive constants and $a_1, m$ are some nonnegative constants. We make use of a differential inequality technique and Sobolev inequality to obtain a lower bound for the blow-up time of the solution. In addition, an upper bound for the blow-up time is also derived.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6115blow-up problemsquasilinear reaction equationweighted nonlocal source
collection DOAJ
language English
format Article
sources DOAJ
author Juntang Ding
Xuhui Shen
spellingShingle Juntang Ding
Xuhui Shen
Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
Electronic Journal of Qualitative Theory of Differential Equations
blow-up problems
quasilinear reaction equation
weighted nonlocal source
author_facet Juntang Ding
Xuhui Shen
author_sort Juntang Ding
title Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
title_short Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
title_full Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
title_fullStr Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
title_full_unstemmed Blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
title_sort blow-up problems for quasilinear reaction diffusion equations with weighted nonlocal source
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2018-01-01
description In this paper, we investigate the following quasilinear reaction diffusion equations $$ \begin{cases} \left(b(u)\right)_t =\nabla\cdot\left(\rho\left(|\nabla u|^2\right)\nabla u\right)+c(x)f(u) &\hbox{ in } \Omega\times(0,t^{*}),\\ \frac{\partial u}{\partial \nu}=0 &\hbox{ on } \partial\Omega\times(0,t^{*}), \\ u(x,0)=u_{0}(x)\geq0 & \hbox{ in } \overline{\Omega}. \end{cases} $$ Here $\Omega$ is a bounded domain in $\mathbb{R}^{n}\ (n\geq2)$ with smooth boundary $\partial\Omega$. Weighted nonlocal source satisfies $$ c(x)f(u(x,t))\leq a_1+a_2\left(u(x,t)\right)^{p}\left(\int_{\Omega}\left(u(x,t)\right)^{\alpha}{\rm d}x\right)^{m}, $$ where $a_2,p,\alpha$ are some positive constants and $a_1, m$ are some nonnegative constants. We make use of a differential inequality technique and Sobolev inequality to obtain a lower bound for the blow-up time of the solution. In addition, an upper bound for the blow-up time is also derived.
topic blow-up problems
quasilinear reaction equation
weighted nonlocal source
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6115
work_keys_str_mv AT juntangding blowupproblemsforquasilinearreactiondiffusionequationswithweightednonlocalsource
AT xuhuishen blowupproblemsforquasilinearreactiondiffusionequationswithweightednonlocalsource
_version_ 1721303539949502464