Biomimetic Au/CeO2 Catalysts Decorated with Hemin or Ferrous Phthalocyanine for Improved CO Oxidation via Local Synergistic Effects

Summary: Biomimetic catalysts have drawn broad research interest owing to both high specificity and excellent catalytic activity. Herein, we report a series of biomimetic catalysts by the integration of biomolecules (hemin or ferrous phthalocyanine) onto well-defined Au/CeO2, which leads to the high...

Full description

Bibliographic Details
Main Authors: Longlong Fan, Jiajun Dai, Zhongliang Huang, Jingran Xiao, Qingbiao Li, Jiale Huang, Shu-Feng Zhou, Guowu Zhan
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S258900422031049X
Description
Summary:Summary: Biomimetic catalysts have drawn broad research interest owing to both high specificity and excellent catalytic activity. Herein, we report a series of biomimetic catalysts by the integration of biomolecules (hemin or ferrous phthalocyanine) onto well-defined Au/CeO2, which leads to the high-performance CO oxidation catalysts. Strong electronic interactions among the biomolecule, Au, and CeO2 were confirmed, and the CO uptake over hemin-Au/CeO2 was roughly about 8 times greater than Au/CeO2. Based on the Au/CeO2(111) and hemin-Au/CeO2(111) models, the density functional theory calculations reveal the mechanisms of the biomolecules-assisted catalysis process. The theoretical prediction suggests that CO and O2 molecules preferentially bind to the surface of noncontacting Au atoms (low-coordinated sites) rather than the biomolecule sites, and the accelerating oxidation of Au-bound CO occurs via either the Langmuir-Hinshelwood mechanism or the Mars-van Krevelen mechanism. Accordingly, the findings provide useful insights into developing biomimetic catalysts with low cost and high activity.
ISSN:2589-0042