New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
The aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline&...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/5/602 |
id |
doaj-f74d2dba14e841e6b5003d295a06819b |
---|---|
record_format |
Article |
spelling |
doaj-f74d2dba14e841e6b5003d295a06819b2020-11-24T21:24:19ZengMDPI AGSymmetry2073-89942019-04-0111560210.3390/sym11050602sym11050602New Fixed Point Theorems with Applications to Non-Linear Neutral Differential EquationsLaila A. Alnaser0Jamshaid Ahmad1Durdana Lateef2Hoda A. Fouad3Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaDepartment of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaThe aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>,</mo> <mi>φ</mi> </mrow> </semantics> </math> </inline-formula>) rational contraction, as well as cyclic contractions in the context of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces. We also supply an example to support the new theorem.https://www.mdpi.com/2073-8994/11/5/602nonlinear neutral differential equation<named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space(<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contractionfixed point |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Laila A. Alnaser Jamshaid Ahmad Durdana Lateef Hoda A. Fouad |
spellingShingle |
Laila A. Alnaser Jamshaid Ahmad Durdana Lateef Hoda A. Fouad New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations Symmetry nonlinear neutral differential equation <named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space (<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contraction fixed point |
author_facet |
Laila A. Alnaser Jamshaid Ahmad Durdana Lateef Hoda A. Fouad |
author_sort |
Laila A. Alnaser |
title |
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations |
title_short |
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations |
title_full |
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations |
title_fullStr |
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations |
title_full_unstemmed |
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations |
title_sort |
new fixed point theorems with applications to non-linear neutral differential equations |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-04-01 |
description |
The aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>,</mo> <mi>φ</mi> </mrow> </semantics> </math> </inline-formula>) rational contraction, as well as cyclic contractions in the context of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces. We also supply an example to support the new theorem. |
topic |
nonlinear neutral differential equation <named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space (<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contraction fixed point |
url |
https://www.mdpi.com/2073-8994/11/5/602 |
work_keys_str_mv |
AT lailaaalnaser newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations AT jamshaidahmad newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations AT durdanalateef newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations AT hodaafouad newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations |
_version_ |
1725988972251840512 |