New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations

The aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline&...

Full description

Bibliographic Details
Main Authors: Laila A. Alnaser, Jamshaid Ahmad, Durdana Lateef, Hoda A. Fouad
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/5/602
id doaj-f74d2dba14e841e6b5003d295a06819b
record_format Article
spelling doaj-f74d2dba14e841e6b5003d295a06819b2020-11-24T21:24:19ZengMDPI AGSymmetry2073-89942019-04-0111560210.3390/sym11050602sym11050602New Fixed Point Theorems with Applications to Non-Linear Neutral Differential EquationsLaila A. Alnaser0Jamshaid Ahmad1Durdana Lateef2Hoda A. Fouad3Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaDepartment of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara 41411, Saudi ArabiaThe aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>,</mo> <mi>&#966;</mi> </mrow> </semantics> </math> </inline-formula>) rational contraction, as well as cyclic contractions in the context of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces. We also supply an example to support the new theorem.https://www.mdpi.com/2073-8994/11/5/602nonlinear neutral differential equation<named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space(<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contractionfixed point
collection DOAJ
language English
format Article
sources DOAJ
author Laila A. Alnaser
Jamshaid Ahmad
Durdana Lateef
Hoda A. Fouad
spellingShingle Laila A. Alnaser
Jamshaid Ahmad
Durdana Lateef
Hoda A. Fouad
New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
Symmetry
nonlinear neutral differential equation
<named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space
(<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contraction
fixed point
author_facet Laila A. Alnaser
Jamshaid Ahmad
Durdana Lateef
Hoda A. Fouad
author_sort Laila A. Alnaser
title New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
title_short New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
title_full New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
title_fullStr New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
title_full_unstemmed New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations
title_sort new fixed point theorems with applications to non-linear neutral differential equations
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-04-01
description The aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>,</mo> <mi>&#966;</mi> </mrow> </semantics> </math> </inline-formula>) rational contraction, as well as cyclic contractions in the context of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces. We also supply an example to support the new theorem.
topic nonlinear neutral differential equation
<named-content content-type="equation"><inline-formula> <mml:math id="mm2222" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-metric space
(<named-content content-type="equation"><inline-formula> <mml:math id="mm1111" display="block"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>φ</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>) rational contraction
fixed point
url https://www.mdpi.com/2073-8994/11/5/602
work_keys_str_mv AT lailaaalnaser newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations
AT jamshaidahmad newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations
AT durdanalateef newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations
AT hodaafouad newfixedpointtheoremswithapplicationstononlinearneutraldifferentialequations
_version_ 1725988972251840512