Human–water interface in hydrological modelling: current status and future directions

Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificia...

Full description

Bibliographic Details
Main Authors: Y. Wada, M. F. P. Bierkens, A. de Roo, P. A. Dirmeyer, J. S. Famiglietti, N. Hanasaki, M. Konar, J. Liu, H. Müller Schmied, T. Oki, Y. Pokhrel, M. Sivapalan, T. J. Troy, A. I. J. M. van Dijk, T. van Emmerik, M. H. J. Van Huijgevoort, H. A. J. Van Lanen, C. J. Vörösmarty, N. Wanders, H. Wheater
Format: Article
Language:English
Published: Copernicus Publications 2017-08-01
Series:Hydrology and Earth System Sciences
Online Access:https://www.hydrol-earth-syst-sci.net/21/4169/2017/hess-21-4169-2017.pdf
id doaj-f756037d324b4a97b8afd3c62f9d4ad9
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Wada
Y. Wada
M. F. P. Bierkens
M. F. P. Bierkens
A. de Roo
A. de Roo
P. A. Dirmeyer
J. S. Famiglietti
N. Hanasaki
M. Konar
J. Liu
J. Liu
H. Müller Schmied
H. Müller Schmied
T. Oki
T. Oki
Y. Pokhrel
M. Sivapalan
M. Sivapalan
T. J. Troy
A. I. J. M. van Dijk
T. van Emmerik
M. H. J. Van Huijgevoort
H. A. J. Van Lanen
C. J. Vörösmarty
C. J. Vörösmarty
N. Wanders
N. Wanders
H. Wheater
spellingShingle Y. Wada
Y. Wada
M. F. P. Bierkens
M. F. P. Bierkens
A. de Roo
A. de Roo
P. A. Dirmeyer
J. S. Famiglietti
N. Hanasaki
M. Konar
J. Liu
J. Liu
H. Müller Schmied
H. Müller Schmied
T. Oki
T. Oki
Y. Pokhrel
M. Sivapalan
M. Sivapalan
T. J. Troy
A. I. J. M. van Dijk
T. van Emmerik
M. H. J. Van Huijgevoort
H. A. J. Van Lanen
C. J. Vörösmarty
C. J. Vörösmarty
N. Wanders
N. Wanders
H. Wheater
Human–water interface in hydrological modelling: current status and future directions
Hydrology and Earth System Sciences
author_facet Y. Wada
Y. Wada
M. F. P. Bierkens
M. F. P. Bierkens
A. de Roo
A. de Roo
P. A. Dirmeyer
J. S. Famiglietti
N. Hanasaki
M. Konar
J. Liu
J. Liu
H. Müller Schmied
H. Müller Schmied
T. Oki
T. Oki
Y. Pokhrel
M. Sivapalan
M. Sivapalan
T. J. Troy
A. I. J. M. van Dijk
T. van Emmerik
M. H. J. Van Huijgevoort
H. A. J. Van Lanen
C. J. Vörösmarty
C. J. Vörösmarty
N. Wanders
N. Wanders
H. Wheater
author_sort Y. Wada
title Human–water interface in hydrological modelling: current status and future directions
title_short Human–water interface in hydrological modelling: current status and future directions
title_full Human–water interface in hydrological modelling: current status and future directions
title_fullStr Human–water interface in hydrological modelling: current status and future directions
title_full_unstemmed Human–water interface in hydrological modelling: current status and future directions
title_sort human–water interface in hydrological modelling: current status and future directions
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2017-08-01
description Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human–water interface in hydrological models.
url https://www.hydrol-earth-syst-sci.net/21/4169/2017/hess-21-4169-2017.pdf
work_keys_str_mv AT ywada humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT ywada humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT mfpbierkens humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT mfpbierkens humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT aderoo humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT aderoo humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT padirmeyer humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT jsfamiglietti humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT nhanasaki humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT mkonar humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT jliu humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT jliu humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT hmullerschmied humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT hmullerschmied humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT toki humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT toki humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT ypokhrel humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT msivapalan humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT msivapalan humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT tjtroy humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT aijmvandijk humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT tvanemmerik humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT mhjvanhuijgevoort humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT hajvanlanen humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT cjvorosmarty humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT cjvorosmarty humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT nwanders humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT nwanders humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
AT hwheater humanwaterinterfaceinhydrologicalmodellingcurrentstatusandfuturedirections
_version_ 1725695324839739392
spelling doaj-f756037d324b4a97b8afd3c62f9d4ad92020-11-24T22:43:32ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382017-08-01214169419310.5194/hess-21-4169-2017Human–water interface in hydrological modelling: current status and future directionsY. Wada0Y. Wada1M. F. P. Bierkens2M. F. P. Bierkens3A. de Roo4A. de Roo5P. A. Dirmeyer6J. S. Famiglietti7N. Hanasaki8M. Konar9J. Liu10J. Liu11H. Müller Schmied12H. Müller Schmied13T. Oki14T. Oki15Y. Pokhrel16M. Sivapalan17M. Sivapalan18T. J. Troy19A. I. J. M. van Dijk20T. van Emmerik21M. H. J. Van Huijgevoort22H. A. J. Van Lanen23C. J. Vörösmarty24C. J. Vörösmarty25N. Wanders26N. Wanders27H. Wheater28International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, AustriaDepartment of Physical Geography, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the NetherlandsDepartment of Physical Geography, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the NetherlandsUnit Soil and Groundwater Systems, Deltares, Princetonlaan 6, 3584 CB Utrecht, the NetherlandsDepartment of Physical Geography, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the NetherlandsJoint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra, ItalyCenter for Ocean–Land–Atmosphere Studies, George Mason University, 4400 University Dr, Fairfax, VA 22030, USANASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USANational Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, JapanDepartment of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Ave, Urbana, IL 61801, USAInternational Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, AustriaSchool of Environmental Science and Engineering, South University of Science and Technology of China, No. 1008, Xueyuan Blvd, Nanshan, Shenzhen, 518055, ChinaInstitute of Physical Geography, Goethe University, Altenhoeferallee 1, 60438 Frankfurt am Main, GermanySenckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, GermanyInstitute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, JapanUnited Nations University, 5 Chome-53-70 Jingumae, Shibuya, Tokyo 150-8925, JapanDepartment of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USADepartment of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Ave, Urbana, IL 61801, USADepartment of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Springfield Avenue, Champaign, IL 61801, USADepartment of Civil and Environmental Engineering, Lehigh University, 1 West Packer Avenue, Bethlehem, PA 18015-3001, USAFenner School of Environment & Society, Australian National University, Linnaeus Way, Canberra, ACT 2601, AustraliaWater Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the NetherlandsProgram in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Rd, Princeton, NJ 08544, USAHydrology and Quantitative Water Management Group, Wageningen University, Droevendaalsesteeg 4, 6708 BP Wageningen, the NetherlandsEnvironmental Sciences Initiative, CUNY Advanced Science Research Center, 85 St Nicholas Terrace, New York, NY 10031, USACivil Engineering Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USADepartment of Physical Geography, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the NetherlandsDepartment of Civil and Environmental Engineering, Princeton University, 59 Olden St, Princeton, NJ 08540, USAGlobal Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, CanadaOver recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human–water interface in hydrological models.https://www.hydrol-earth-syst-sci.net/21/4169/2017/hess-21-4169-2017.pdf