Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
A microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum int...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-04-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.10.021021 |
id |
doaj-f797f732c33e4c79b54a39a2080fbfd5 |
---|---|
record_format |
Article |
spelling |
doaj-f797f732c33e4c79b54a39a2080fbfd52020-11-25T03:27:51ZengAmerican Physical SocietyPhysical Review X2160-33082020-04-0110202102110.1103/PhysRevX.10.021021Photonic-Crystal Josephson Traveling-Wave Parametric AmplifierLuca PlanatArpit RanadiveRémy DassonnevilleJavier Puertas MartínezSébastien LégerCécile NaudOlivier BuissonWiebke Hasch-GuichardDenis M. BaskoNicolas RochA microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum interference devices. It displays a 3-GHz bandwidth, a -100-dBm saturation (1-dB compression) point and added noise near the quantum limit. Compared to the previous state of the art, it is an order of magnitude more compact, its characteristic impedance is in situ tunable, and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the nontrivial interplay between nonlinearity and such periodicity. Our approach provides a path to cointegration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier.http://doi.org/10.1103/PhysRevX.10.021021 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luca Planat Arpit Ranadive Rémy Dassonneville Javier Puertas Martínez Sébastien Léger Cécile Naud Olivier Buisson Wiebke Hasch-Guichard Denis M. Basko Nicolas Roch |
spellingShingle |
Luca Planat Arpit Ranadive Rémy Dassonneville Javier Puertas Martínez Sébastien Léger Cécile Naud Olivier Buisson Wiebke Hasch-Guichard Denis M. Basko Nicolas Roch Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier Physical Review X |
author_facet |
Luca Planat Arpit Ranadive Rémy Dassonneville Javier Puertas Martínez Sébastien Léger Cécile Naud Olivier Buisson Wiebke Hasch-Guichard Denis M. Basko Nicolas Roch |
author_sort |
Luca Planat |
title |
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier |
title_short |
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier |
title_full |
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier |
title_fullStr |
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier |
title_full_unstemmed |
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier |
title_sort |
photonic-crystal josephson traveling-wave parametric amplifier |
publisher |
American Physical Society |
series |
Physical Review X |
issn |
2160-3308 |
publishDate |
2020-04-01 |
description |
A microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum interference devices. It displays a 3-GHz bandwidth, a -100-dBm saturation (1-dB compression) point and added noise near the quantum limit. Compared to the previous state of the art, it is an order of magnitude more compact, its characteristic impedance is in situ tunable, and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the nontrivial interplay between nonlinearity and such periodicity. Our approach provides a path to cointegration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier. |
url |
http://doi.org/10.1103/PhysRevX.10.021021 |
work_keys_str_mv |
AT lucaplanat photoniccrystaljosephsontravelingwaveparametricamplifier AT arpitranadive photoniccrystaljosephsontravelingwaveparametricamplifier AT remydassonneville photoniccrystaljosephsontravelingwaveparametricamplifier AT javierpuertasmartinez photoniccrystaljosephsontravelingwaveparametricamplifier AT sebastienleger photoniccrystaljosephsontravelingwaveparametricamplifier AT cecilenaud photoniccrystaljosephsontravelingwaveparametricamplifier AT olivierbuisson photoniccrystaljosephsontravelingwaveparametricamplifier AT wiebkehaschguichard photoniccrystaljosephsontravelingwaveparametricamplifier AT denismbasko photoniccrystaljosephsontravelingwaveparametricamplifier AT nicolasroch photoniccrystaljosephsontravelingwaveparametricamplifier |
_version_ |
1715208045418512384 |