Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier

A microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum int...

Full description

Bibliographic Details
Main Authors: Luca Planat, Arpit Ranadive, Rémy Dassonneville, Javier Puertas Martínez, Sébastien Léger, Cécile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, Nicolas Roch
Format: Article
Language:English
Published: American Physical Society 2020-04-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.10.021021
id doaj-f797f732c33e4c79b54a39a2080fbfd5
record_format Article
spelling doaj-f797f732c33e4c79b54a39a2080fbfd52020-11-25T03:27:51ZengAmerican Physical SocietyPhysical Review X2160-33082020-04-0110202102110.1103/PhysRevX.10.021021Photonic-Crystal Josephson Traveling-Wave Parametric AmplifierLuca PlanatArpit RanadiveRémy DassonnevilleJavier Puertas MartínezSébastien LégerCécile NaudOlivier BuissonWiebke Hasch-GuichardDenis M. BaskoNicolas RochA microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum interference devices. It displays a 3-GHz bandwidth, a -100-dBm saturation (1-dB compression) point and added noise near the quantum limit. Compared to the previous state of the art, it is an order of magnitude more compact, its characteristic impedance is in situ tunable, and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the nontrivial interplay between nonlinearity and such periodicity. Our approach provides a path to cointegration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier.http://doi.org/10.1103/PhysRevX.10.021021
collection DOAJ
language English
format Article
sources DOAJ
author Luca Planat
Arpit Ranadive
Rémy Dassonneville
Javier Puertas Martínez
Sébastien Léger
Cécile Naud
Olivier Buisson
Wiebke Hasch-Guichard
Denis M. Basko
Nicolas Roch
spellingShingle Luca Planat
Arpit Ranadive
Rémy Dassonneville
Javier Puertas Martínez
Sébastien Léger
Cécile Naud
Olivier Buisson
Wiebke Hasch-Guichard
Denis M. Basko
Nicolas Roch
Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
Physical Review X
author_facet Luca Planat
Arpit Ranadive
Rémy Dassonneville
Javier Puertas Martínez
Sébastien Léger
Cécile Naud
Olivier Buisson
Wiebke Hasch-Guichard
Denis M. Basko
Nicolas Roch
author_sort Luca Planat
title Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
title_short Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
title_full Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
title_fullStr Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
title_full_unstemmed Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
title_sort photonic-crystal josephson traveling-wave parametric amplifier
publisher American Physical Society
series Physical Review X
issn 2160-3308
publishDate 2020-04-01
description A microwave amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid-state quantum technologies. Here, we introduce a new traveling-wave parametric amplifier based on superconducting quantum interference devices. It displays a 3-GHz bandwidth, a -100-dBm saturation (1-dB compression) point and added noise near the quantum limit. Compared to the previous state of the art, it is an order of magnitude more compact, its characteristic impedance is in situ tunable, and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the nontrivial interplay between nonlinearity and such periodicity. Our approach provides a path to cointegration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier.
url http://doi.org/10.1103/PhysRevX.10.021021
work_keys_str_mv AT lucaplanat photoniccrystaljosephsontravelingwaveparametricamplifier
AT arpitranadive photoniccrystaljosephsontravelingwaveparametricamplifier
AT remydassonneville photoniccrystaljosephsontravelingwaveparametricamplifier
AT javierpuertasmartinez photoniccrystaljosephsontravelingwaveparametricamplifier
AT sebastienleger photoniccrystaljosephsontravelingwaveparametricamplifier
AT cecilenaud photoniccrystaljosephsontravelingwaveparametricamplifier
AT olivierbuisson photoniccrystaljosephsontravelingwaveparametricamplifier
AT wiebkehaschguichard photoniccrystaljosephsontravelingwaveparametricamplifier
AT denismbasko photoniccrystaljosephsontravelingwaveparametricamplifier
AT nicolasroch photoniccrystaljosephsontravelingwaveparametricamplifier
_version_ 1715208045418512384